
ContentsContents

 Data Analysis Expressions (DAX) Reference
 Learn

 DAX overview
 Videos
 Use DAX in Power BI Desktop Learn path
 Sample model
 Best practices

 Appropriate use of error functions
 Avoid converting BLANKs to values
 Avoid using FILTER as a filter argument
 Column and measure references
 DIVIDE function vs divide operator (/)
 Use SELECTEDVALUE instead of VALUES
 Use COUNTROWS instead of COUNT
 Use variables to improve formulas

 DAX functions
 DAX function reference
 New DAX functions
 Aggregation functions

 Aggregation functions overview
 APPROXIMATEDISTINCTCOUNT
 AVERAGE
 AVERAGEA
 AVERAGEX
 COUNT
 COUNTA
 COUNTAX
 COUNTBLANK
 COUNTROWS

file:///T:/zxoa/olya/dax/index.html#body
http://aka.ms/learndax

 COUNTX
 DISTINCTCOUNT
 DISTINCTCOUNTNOBLANK
 MAX
 MAXA
 MAXX
 MIN
 MINA
 MINX
 PRODUCT
 PRODUCTX
 SUM
 SUMX

 Date and time functions
 Date and time functions overview
 CALENDAR
 CALENDARAUTO
 DATE
 DATEDIFF
 DATEVALUE
 DAY
 EDATE
 EOMONTH
 HOUR
 MINUTE
 MONTH
 NOW
 QUARTER
 SECOND
 TIME
 TIMEVALUE
 TODAY

 UTCNOW
 UTCTODAY
 WEEKDAY
 WEEKNUM
 YEAR
 YEARFRAC

 Filter functions
 Filter functions overview
 ALL
 ALLCROSSFILTERED
 ALLEXCEPT
 ALLNOBLANKROW
 ALLSELECTED
 CALCULATE
 CALCULATETABLE
 EARLIER
 EARLIEST
 FILTER
 KEEPFILTERS
 LOOKUPVALUE
 REMOVEFILTERS
 SELECTEDVALUE

 Financial functions
 Financial functions overview
 ACCRINT
 ACCRINTM
 AMORDEGRC
 AMORLINC
 COUPDAYBS
 COUPDAYS
 COUPDAYSNC
 COUPNCD

 COUPNUM
 COUPPCD
 CUMIPMT
 CUMPRINC
 DB
 DDB
 DISC
 DOLLARDE
 DOLLARFR
 DURATION
 EFFECT
 FV
 INTRATE
 IPMT
 ISPMT
 MDURATION
 NOMINAL
 NPER
 ODDFPRICE
 ODDFYIELD
 ODDLPRICE
 ODDLYIELD
 PDURATION
 PMT
 PPMT
 PRICE
 PRICEDISC
 PRICEMAT
 PV
 RATE
 RECEIVED
 RRI

 SLN
 SYD
 TBILLEQ
 TBILLPRICE
 TBILLYIELD
 VDB
 XIRR
 XNPV
 YIELD
 YIELDDISC
 YIELDMAT

 Information functions
 Information functions overview
 CONTAINS
 CONTAINSROW
 CONTAINSSTRING
 CONTAINSSTRINGEXACT
 CUSTOMDATA
 HASONEFILTER
 HASONEVALUE
 ISAFTER
 ISBLANK
 ISCROSSFILTERED
 ISEMPTY
 ISERROR
 ISEVEN
 ISFILTERED
 ISINSCOPE
 ISLOGICAL
 ISNONTEXT
 ISNUMBER
 ISODD

 ISONORAFTER
 ISSELECTEDMEASURE
 ISSUBTOTAL
 ISTEXT
 NONVISUAL
 SELECTEDMEASURE
 SELECTEDMEASUREFORMATSTRING
 SELECTEDMEASURENAME
 USERNAME
 USEROBJECTID
 USERPRINCIPALNAME

 Logical functions
 Logical functions overview
 AND
 BITAND
 BITLSHIFT
 BITOR
 BITRSHIFT
 BITXOR
 COALESCE
 FALSE
 IF
 IF.EAGER
 IFERROR
 NOT
 OR
 SWITCH
 TRUE

 Math and trig functions
 Math and trig functions overview
 ABS
 ACOS

 ACOSH
 ACOT
 ACOTH
 ASIN
 ASINH
 ATAN
 ATANH
 CEILING
 CONVERT
 COS
 COSH
 COT
 COTH
 CURRENCY
 DEGREES
 DIVIDE
 EVEN
 EXP
 FACT
 FLOOR
 GCD
 INT
 ISO.CEILING
 LCM
 LN
 LOG
 LOG10
 MOD
 MROUND
 ODD
 PI
 POWER

 QUOTIENT
 RADIANS
 RAND
 RANDBETWEEN
 ROUND
 ROUNDDOWN
 ROUNDUP
 SIGN
 SIN
 SINH
 SQRT
 SQRTPI
 TAN
 TANH
 TRUNC

 Other functions
 Other functions overview
 BLANK
 ERROR

 Parent and child functions
 Parent and child functions overview
 Understanding functions for parent-child hierarchies
 PATH
 PATHCONTAINS
 PATHITEM
 PATHITEMREVERSE
 PATHLENGTH

 Relationship functions
 Relationship functions
 CROSSFILTER
 RELATED
 RELATEDTABLE

 USERELATIONSHIP
 Statistical functions

 Statistical functions overview
 BETA.DIST
 BETA.INV
 CHISQ.DIST
 CHISQ.DIST.RT
 CHISQ.INV
 CHISQ.INV.RT
 COMBIN
 COMBINA
 CONFIDENCE.NORM
 CONFIDENCE.T
 EXPON.DIST
 GEOMEAN
 GEOMEANX
 MEDIAN
 MEDIANX
 NORM.DIST
 NORM.INV
 NORM.S.DIST
 NORM.S.INV
 PERCENTILE.EXC
 PERCENTILE.INC
 PERCENTILEX.EXC
 PERCENTILEX.INC
 PERMUT
 POISSON.DIST
 RANK.EQ
 RANKX
 SAMPLE
 STDEV.S

 STDEV.P
 STDEVX.S
 STDEVX.P
 T.DIST
 T.DIST.2T
 T.DIST.RT
 T.INV
 T.INV.2T
 VAR.S
 VAR.P
 VARX.S
 VARX.P

 Table manipulation functions
 Table manipulation functions overview
 ADDCOLUMNS
 ADDMISSINGITEMS
 CROSSJOIN
 CURRENTGROUP
 DATATABLE
 DETAILROWS
 DISTINCT (column)
 DISTINCT (table)
 EXCEPT
 FILTERS
 GENERATE
 GENERATEALL
 GENERATESERIES
 GROUPBY
 IGNORE
 INTERSECT
 NATURALINNERJOIN
 NATURALLEFTOUTERJOIN

 ROLLUP
 ROLLUPADDISUBTOTAL
 ROLLUPGROUP
 ROLLUPISUBTOTAL
 ROW
 SELECTCOLUMNS
 SUBSTITUTEWITHINDEX
 SUMMARIZE
 SUMMARIZECOLUMNS
 Table constructor
 TOPN
 TREATAS
 UNION
 VALUES

 Text functions
 Text functions overview
 COMBINEVALUES
 CONCATENATE
 CONCATENATEX
 EXACT
 FIND
 FIXED
 FORMAT
 LEFT
 LEN
 LOWER
 MID
 REPLACE
 REPT
 RIGHT
 SEARCH
 SUBSTITUTE

 TRIM
 UNICHAR
 UNICODE
 UPPER
 VALUE

 Time intelligence functions
 Time intelligence functions overview
 CLOSINGBALANCEMONTH
 CLOSINGBALANCEQUARTER
 CLOSINGBALANCEYEAR
 DATEADD
 DATESBETWEEN
 DATESINPERIOD
 DATESMTD
 DATESQTD
 DATESYTD
 ENDOFMONTH
 ENDOFQUARTER
 ENDOFYEAR
 FIRSTDATE
 FIRSTNONBLANK
 FIRSTNONBLANKVALUE
 LASTDATE
 LASTNONBLANK
 LASTNONBLANKVALUE
 NEXTDAY
 NEXTMONTH
 NEXTQUARTER
 NEXTYEAR
 OPENINGBALANCEMONTH
 OPENINGBALANCEQUARTER
 OPENINGBALANCEYEAR

 PARALLELPERIOD
 PREVIOUSDAY
 PREVIOUSMONTH
 PREVIOUSQUARTER
 PREVIOUSYEAR
 SAMEPERIODLASTYEAR
 STARTOFMONTH
 STARTOFQUARTER
 STARTOFYEAR
 TOTALMTD
 TOTALQTD
 TOTALYTD

 DAX statements
 Statements overview
 DEFINE
 EVALUATE
 ORDER BY
 VAR

 DAX glossary
 DAX operators
 DAX queries
 DAX parameter-naming
 DAX syntax

DAX overview
 10/26/2021 • 31 minutes to read

 Calculations

 MeasuresMeasures

Total Sales = SUM([Sales Amount])

Data Analysis Expressions (DAX) is a formula expression language used in Analysis Services, Power BI, and

Power Pivot in Excel. DAX formulas include functions, operators, and values to perform advanced calculations

and queries on data in related tables and columns in tabular data models.

This article provides only a basic introduction to the most important concepts in DAX. It describes DAX as it

applies to all the products that use it. Some functionality may not apply to certain products or use cases. Refer to

your product's documentation describing its particular implementation of DAX.

DAX formulas are used in measures, calculated columns, calculated tables, and row-level security.

Measures are dynamic calculation formulas where the results change depending on context. Measures are used

in reporting that support combining and filtering model data by using multiple attributes such as a Power BI

report or Excel PivotTable or PivotChart. Measures are created by using the DAX formula bar in the model

designer.

A formula in a measure can use standard aggregation functions automatically created by using the Autosum

feature, such as COUNT or SUM, or you can define your own formula by using the DAX formula bar. Named

measures can be passed as an argument to other measures.

When you define a formula for a measure in the formula bar, a Tooltip feature shows a preview of what the

results would be for the total in the current context, but otherwise the results are not immediately output

anywhere. The reason you cannot see the (filtered) results of the calculation immediately is because the result of

a measure cannot be determined without context. To evaluate a measure requires a reporting client application

that can provide the context needed to retrieve the data relevant to each cell and then evaluate the expression

for each cell. That client might be an Excel PivotTable or PivotChart, a Power BI report, or a table expression in a

DAX query in SQL Server Management Studio (SSMS).

Regardless of the client, a separate query is run for each cell in the results. That is to say, each combination of

row and column headers in a PivotTable, or each selection of slicers and filters in a Power BI report, generates a

different subset of data over which the measure is calculated. For example, using this very simple measure

formula:

When a user places the TotalSales measure in a report, and then places the Product Category column from a

Product table into Filters, the sum of Sales Amount is calculated and displayed for each product category.

Unlike calculated columns, the syntax for a measure includes the measure's name preceding the formula. In the

example just provided, the name Total SalesTotal Sales appears preceding the formula. After you've created a measure,

the name and its definition appear in the reporting client application Fields list, and depending on perspectives

and roles is available to all users of the model.

To learn more, see:

Measures in Power BI Desktop

Measures in Analysis Services

https://docs.microsoft.com/en-us/power-bi/transform-model/desktop-measures
https://docs.microsoft.com/en-us/analysis-services/tabular-models/measures-ssas-tabular

 Calculated columnsCalculated columns

= [Calendar Year] & " Q" & [Calendar Quarter]

 Calculated tablesCalculated tables

 Row-level securityRow-level security

= Customers[Country] = "USA"

Measures in Power Pivot

A calculated column is a column that you add to an existing table (in the model designer) and then create a DAX

formula that defines the column's values. When a calculated column contains a valid DAX formula, values are

calculated for each row as soon as the formula is entered. Values are then stored in the in-memory data model.

For example, in a Date table, when the formula is entered into the formula bar :

A value for each row in the table is calculated by taking values from the Calendar Year column (in the same Date

table), adding a space and the capital letter Q, and then adding the values from the Calendar Quarter column (in

the same Date table). The result for each row in the calculated column is calculated immediately and appears, for

example, as 2017 Q12017 Q1 . Column values are only recalculated if the table or any related table is processed

(refresh) or the model is unloaded from memory and then reloaded, like when closing and reopening a Power BI

Desktop file.

To learn more, see:

Calculated columns in Power BI Desktop

Calculated columns in Analysis Services

Calculated Columns in Power Pivot.

A calculated table is a computed object, based on a formula expression, derived from all or part of other tables

in the same model. Instead of querying and loading values into your new table's columns from a data source, a

DAX formula defines the table's values.

Calculated tables can be helpful in a role-playing dimension. An example is the Date table, as OrderDate,

ShipDate, or DueDate, depending on the foreign key relationship. By creating a calculated table for ShipDate

explicitly, you get a standalone table that is available for queries, as fully operable as any other table. Calculated

tables are also useful when configuring a filtered rowset, or a subset or superset of columns from other existing

tables. This allows you to keep the original table intact while creating variations of that table to support specific

scenarios.

Calculated tables support relationships with other tables. The columns in your calculated table have data types,

formatting, and can belong to a data category. Calculated tables can be named, and surfaced or hidden just like

any other table. Calculated tables are re-calculated if any of the tables it pulls data from are refreshed or

updated.

To learn more, see:

Calculated tables in Power BI Desktop

Calculated tables in Analysis Services.

With row-level security, a DAX formula must evaluate to a Boolean TRUE/FALSE condition, defining which rows

can be returned by the results of a query by members of a particular role. For example, for members of the

Sales role, the Customers table with the following DAX formula:

Members of the Sales role will only be able to view data for customers in the USA, and aggregates, such as SUM

are returned only for customers in the USA. Row-level security is not available in Power Pivot in Excel.

When defining row-level secuirty by using DAX formula, you are creating an allowed row set. This does not

https://support.office.com/article/Measures-in-Power-Pivot-86484821-a324-4da3-803b-82fd2e5033f4
https://docs.microsoft.com/en-us/power-bi/transform-model/desktop-calculated-columns
https://docs.microsoft.com/en-us/analysis-services/tabular-models/ssas-calculated-columns
https://support.office.com/article/calculated-columns-in-power-pivot-a0eb7167-33fc-4ade-a23f-fb9217c193af
https://docs.microsoft.com/en-us/power-bi/transform-model/desktop-calculated-tables
https://docs.microsoft.com/en-us/analysis-services/tabular-models/create-a-calculated-table-ssas-tabular

 Queries

EVALUATE
 (FILTER ('DimProduct', [SafetyStockLevel] < 200))
ORDER BY [EnglishProductName] ASC

 Formulas

 Formula basicsFormula basics

F O RM UL AF O RM UL A DEF IN IT IO NDEF IN IT IO N

= TODAY() Inserts today's date in every row of a calculated column.

= 3 Inserts the value 3 in every row of a calculated column.

= [Column1] + [Column2] Adds the values in the same row of [Column1] and
[Column2] and puts the results in the calculated column of
the same row.

deny access to other rows; rather, they are simply not returned as part of the allowed row set. Other roles can

allow access to the rows excluded by the DAX formula. If a user is a member of another role, and that role's row-

level security allows access to that particular row set, the user can view data for that row.

Row-level security formulas apply to the specified rows as well as related rows. When a table has multiple

relationships, filters apply security for the relationship that is active. Row-level security formulas will be

intersected with other formulas defined for related tables.

To learn more, see:

Row-level security (RLS) with Power BI

Roles in Analysis Services

DAX queries can be created and run in SQL Server Management Studio (SSMS) and open-source tools like DAX

Studio (daxstudio.org). Unlike DAX calculation formulas, which can only be created in tabular data models, DAX

queries can also be run against Analysis Services Multidimensional models. DAX queries are often easier to

write and more efficient than Multidimensional Data Expressions (MDX) queries.

A DAX query is a statement, similar to a SELECT statement in T-SQL. The most basic type of DAX query is an

evaluate statement. For example,

Returns in Results a table listing only those products with a SafetyStockLevel less than 200, in ascending order

by EnglishProductName.

You can create measures as part of the query. Measures exist only for the duration of the query. To learn more,

see DAX queries.

DAX formulas are essential for creating calculations in calculated columns and measures, and securing your data

by using row-level security. To create formulas for calculated columns and measures, use the formula bar along

the top of the model designer window or the DAX Editor. To create formulas for row-level security, use the Role

Manager or Manage roles dialog box. Information in this section is meant to get you started with understanding

the basics of DAX formulas.

DAX formulas can be very simple or quite complex. The following table shows some examples of simple

formulas that could be used in a calculated column.

Whether the formula you create is simple or complex, you can use the following steps when building a formula:

https://docs.microsoft.com/en-us/power-bi/admin/service-admin-rls
https://docs.microsoft.com/en-us/analysis-services/tabular-models/roles-ssas-tabular

NOTENOTE

Days in Current Quarter = COUNTROWS(DATESBETWEEN('Date'[Date], STARTOFQUARTER(LASTDATE('Date'[Date])),
ENDOFQUARTER('Date'[Date])))

F O RM UL A EL EM EN TF O RM UL A EL EM EN T DESC RIP T IO NDESC RIP T IO N

Days in Current Quarter The name of the measure.

= The equals sign (=) begins the formula.

COUNTROWS COUNTROWS counts the number of rows in the Date table

() Open and closing parenthesis specifies arguments.

DATESBETWEEN The DATESBETWEEN function returns the dates between the
last date for each value in the Date column in the Date table.

'Date' Specifies the Date table. Tables are in single quotes.

[Date] Specifies the Date column in the Date table. Columns are in
brackets.

1. Each formula must begin with an equal sign (=).

2. You can either type or select a function name, or type an expression.

3. Begin to type the first few letters of the function or name you want, and AutoComplete displays a list of

available functions, tables, and columns. Press TAB to add an item from the AutoComplete list to the

formula.

You can also click the FxFx button to display a list of available functions. To select a function from the

dropdown list, use the arrow keys to highlight the item, and click OKOK to add the function to the formula.

4. Supply the arguments to the function by selecting them from a dropdown list of possible tables and

columns, or by typing in values.

5. Check for syntax errors: ensure that all parentheses are closed and columns, tables and values are

referenced correctly.

6. Press ENTER to accept the formula.

In a calculated column, as soon as you enter the formula and the formula is validated, the column is populated with

values. In a measure, pressing ENTER saves the measure definition with the table. If a formula is invalid, an error is

displayed.

In this example, let's look at a formula in a measure named Days in Current Quar terDays in Current Quar ter :

This measure is used to create a comparison ratio between an incomplete period and the previous period. The

formula must take into account the proportion of the period that has elapsed, and compare it to the same

proportion in the previous period. In this case, [Days Current Quarter to Date]/[Days in Current Quarter] gives

the proportion elapsed in the current period.

This formula contains the following elements:

,

STARTOFQUARTER The STARTOFQUARTER function returns the date of the start
of the quarter.

LASTDATE The LASTDATE function returns the last date of the quarter.

'Date' Specifies the Date table.

[Date] Specifies the Date column in the Date table.

,

ENDOFQUARTER The ENDOFQUARTER function

'Date' Specifies the Date table.

[Date] Specifies the Date column in the Date table.

F O RM UL A EL EM EN TF O RM UL A EL EM EN T DESC RIP T IO NDESC RIP T IO N

 Using formula AutoCompleteUsing formula AutoComplete

 Using multiple functions in a formulaUsing multiple functions in a formula

 Functions

AutoComplete helps you enter a valid formula syntax by providing you with options for each element in the

formula.

You can use formula AutoComplete in the middle of an existing formula with nested functions. The text

immediately before the insertion point is used to display values in the drop-down list, and all of the text

after the insertion point remains unchanged.

AutoComplete does not add the closing parenthesis of functions or automatically match parentheses. You

must make sure that each function is syntactically correct or you cannot save or use the formula.

You can nest functions, meaning that you use the results from one function as an argument of another function.

You can nest up to 64 levels of functions in calculated columns. However, nesting can make it difficult to create

or troubleshoot formulas. Many functions are designed to be used solely as nested functions. These functions

return a table, which cannot be directly saved as a result; it must be provided as input to a table function. For

example, the functions SUMX, AVERAGEX, and MINX all require a table as the first argument.

A function is a named formula within an expression. Most functions have required and optional arguments, also

known as parameters, as input. When the function is executed, a value is returned. DAX includes functions you

can use to perform calculations using dates and times, create conditional values, work with strings, perform

lookups based on relationships, and the ability to iterate over a table to perform recursive calculations. If you are

familiar with Excel formulas, many of these functions will appear very similar ; however, DAX formulas are

different in the following important ways:

A DAX function always references a complete column or a table. If you want to use only particular values

from a table or column, you can add filters to the formula.

If you need to customize calculations on a row-by-row basis, DAX provides functions that let you use the

current row value or a related value as a kind of parameter, to perform calculations that vary by context.

To understand how these functions work, see Context in this article.

 Aggregation functionsAggregation functions

 Date and time functionsDate and time functions

 Filter functionsFilter functions

 Financial functionsFinancial functions

 Information functionsInformation functions

 Logical functionsLogical functions

 Mathematical and trigonometric functionsMathematical and trigonometric functions

 Other functionsOther functions

 Relationship functionsRelationship functions

 Statistical functionsStatistical functions

DAX includes many functions that return a table, rather than a value. The table is not displayed in a

reporting client, but is used to provide input to other functions. For example, you can retrieve a table and

then count the distinct values in it, or calculate dynamic sums across filtered tables or columns.

DAX functions include a variety of time intelligence functions. These functions let you define or select date

ranges, and perform dynamic calculations based on these dates or range. For example, you can compare

sums across parallel periods.

Aggregation functions calculate a (scalar) value such as count, sum, average, minimum, or maximum for all rows

in a column or table as defined by the expression. To learn more, see Aggregation functions.

The date and time functions in DAX are similar to date and time functions in Microsoft Excel. However, DAX

functions are based on a datetimedatetime data type starting March 1, 1900. To learn more, see Date and time

functions.

The filter functions in DAX return specific data types, look up values in related tales, and filter by related values.

The lookup functions work by using tables and relationships, like a database. The filtering functions let you

manipulate data context to create dynamic calculations. To learn more, see Filter functions.

The financial functions in DAX are used in formulas that perform financial calculations, such as net present value

and rate of return. These functions are similar to financial functions used in Microsoft Excel. To learn more, see

Financial functions.

An information function looks at the cell or row that is provided as an argument and tells you whether the value

matches the expected type. For example, the ISERROR function returns TRUE if the value that you reference

contains an error. To learn more, see Information functions.

Logical functions act upon an expression to return information about the values in the expression. For example,

the TRUE function lets you know whether an expression that you are evaluating returns a TRUE value. To learn

more, see Logical functions.

The mathematical functions in DAX are very similar to the Excel mathematical and trigonometric functions.

Some minor differences exist in the numeric data types used by DAX functions. To learn more, see Math and trig

functions.

These functions perform unique actions that cannot be defined by any of the categories most other functions

belong to. To learn more, see Other functions.

Relationship functions in DAX allow you to return values from another related table, specify a particular

relationship to use in an expression, and specify cross filtering direction. To learn more, see Relationship

functions.

Statistical functions calculate values related to statistical distributions and probability, such as standard deviation

and number of permutations. To learn more, see Statistical functions.

Text functionsText functions

 Time intelligence functionsTime intelligence functions

 Table manipulation functionsTable manipulation functions

 Variables

VAR
 TotalQty = SUM (Sales[Quantity])

Return

 IF (
 TotalQty > 1000,
 TotalQty * 0.95,
 TotalQty * 1.25
)

 Data types

DATA T Y P E IN M O DELDATA T Y P E IN M O DEL DATA T Y P E IN DA XDATA T Y P E IN DA X DESC RIP T IO NDESC RIP T IO N

Whole Number A 64 bit (eight-bytes) integer value Numbers that have no decimal places.
Integers can be positive or negative
numbers, but must be whole numbers
between -9,223,372,036,854,775,808
(-2^63) and
9,223,372,036,854,775,807 (2^63-1).

Text functions in DAX are very similar to their counterparts in Excel. You can return part of a string, search for

text within a string, or concatenate string values. DAX also provides functions for controlling the formats for

dates, times, and numbers. To learn more, see Text functions.

The time intelligence functions provided in DAX let you create calculations that use built-in knowledge about

calendars and dates. By using time and date ranges in combination with aggregations or calculations, you can

build meaningful comparisons across comparable time periods for sales, inventory, and so on. To learn more,

see Time intelligence functions (DAX).

These functions return a table or manipulate existing tables. For example, by using ADDCOLUMNS you can add

calculated columns to a specified table, or you can return a summary table over a set of groups with the

SUMMARIZECOLUMNS function. To learn more, see Table manipulation functions.

You can create variables within an expression by using VAR. VAR is technically not a function, it's a keyword to

store the result of an expression as a named variable. That variable can then be passed as an argument to other

measure expressions. For example:

In this example, TotalQty can be passed as a named variable to other expressions. Variables can be of any scalar

data type, including tables. Using variables in your DAX formulas can be incredibly powerful.

You can import data into a model from many different data sources that might support different data types.

When you import data into a model, the data is converted to one of the tabular model data types. When the

model data is used in a calculation, the data is then converted to a DAX data type for the duration and output of

the calculation. When you create a DAX formula, the terms used in the formula will automatically determine the

value data type returned.

DAX supports the following data types:

1, 2

Decimal Number A 64 bit (eight-bytes) real number Real numbers are numbers that can
have decimal places. Real numbers
cover a wide range of values:

Negative values from -1.79E +308
through -2.23E -308

Zero

Positive values from 2.23E -308
through 1.79E + 308

However, the number of significant
digits is limited to 17 decimal digits.

Boolean Boolean Either a True or False value.

Text String A Unicode character data string. Can
be strings, numbers or dates
represented in a text format.

Date Date/time Dates and times in an accepted date-
time representation.

Valid dates are all dates after March 1,
1900.

Currency Currency Currency data type allows values
between -922,337,203,685,477.5808
to 922,337,203,685,477.5807 with
four decimal digits of fixed precision.

N/A Blank A blank is a data type in DAX that
represents and replaces SQL nulls. You
can create a blank by using the BLANK
function, and test for blanks by using
the logical function, ISBLANK.

DATA T Y P E IN M O DELDATA T Y P E IN M O DEL DATA T Y P E IN DA XDATA T Y P E IN DA X DESC RIP T IO NDESC RIP T IO N

 Context

1, 2

Tabular data models also include the Table data type as the input or output to many DAX functions. For example,

the FILTER function takes a table as input and outputs another table that contains only the rows that meet the

filter conditions. By combining table functions with aggregation functions, you can perform complex calculations

over dynamically defined data sets.

While data types are typically automatically set, it is important to understand data types and how they apply, in-

particular, to DAX formulas. Errors in formulas or unexpected results, for example, are often caused by using a

particular operator that cannot be used with a data type specified in an argument. For example, the formula,

= 1 & 2 , returns a string result of 12. The formula, = "1" + "2" , however, returns an integer result of 3.

Context is an important concept to understand when creating DAX formulas. Context is what enables you to

perform dynamic analysis, as the results of a formula change to reflect the current row or cell selection and also

any related data. Understanding context and using context effectively are critical for building high-performing,

dynamic analyses, and for troubleshooting problems in formulas.

Formulas in tabular models can be evaluated in a different context, depending on other design elements:

 Row contextRow context

= [Freight] + RELATED('Region'[TaxRate])

 Multiple row contextMultiple row context

= MAXX(FILTER(Sales,[ProdKey] = EARLIER([ProdKey])),Sales[OrderQty])

 Query contextQuery context

Filters applied in a PivotTable or report

Filters defined within a formula

Relationships specified by using special functions within a formula

There are different types of context: row context, query context, and filter context.

Row context can be thought of as "the current row". If you create a formula in a calculated column, the row

context for that formula includes the values from all columns in the current row. If the table is related to another

table, the content also includes all the values from the other table that are related to the current row.

For example, suppose you create a calculated column, = [Freight] + [Tax] , that adds together values from two

columns, Freight and Tax, from the same table. This formula automatically gets only the values from the current

row in the specified columns.

Row context also follows any relationships that have been defined between tables, including relationships

defined within a calculated column by using DAX formulas, to determine which rows in related tables are

associated with the current row.

For example, the following formula uses the RELATED function to fetch a tax value from a related table, based on

the region that the order was shipped to. The tax value is determined by using the value for region in the current

table, looking up the region in the related table, and then getting the tax rate for that region from the related

table.

This formula gets the tax rate for the current region from the Region table and adds it to the value of the Freight

column. In DAX formulas, you do not need to know or specify the specific relationship that connects the tables.

DAX includes functions that iterate calculations over a table. These functions can have multiple current rows,

each with its own row context. In essence, these functions let you create formulas that perform operations

recursively over an inner and outer loop.

For example, suppose your model contains a ProductsProducts table and a SalesSales table. Users might want to go through

the entire sales table, which is full of transactions involving multiple products, and find the largest quantity

ordered for each product in any one transaction.

With DAX you can build a single formula that returns the correct value, and the results are automatically

updated any time a user adds data to the tables.

For a detailed example of this formula, see EARLIER.

To summarize, the EARLIER function stores the row context from the operation that preceded the current

operation. At all times, the function stores in memory two sets of context: one set of context represents the

current row for the inner loop of the formula, and another set of context represents the current row for the outer

loop of the formula. DAX automatically feeds values between the two loops so that you can create complex

aggregates.

Query context refers to the subset of data that is implicitly retrieved for a formula. For example, when a user

places a measure or field into a report, the engine examines row and column headers, slicers, and report filters

to determine the context. The necessary queries are then run against model data to get the correct subset of

 Filter contextFilter context

 Determining context in formulasDetermining context in formulas

data, make the calculations defined by the formula, and then populate values in the report.

Because context changes depending on where you place the formula, the results of the formula can also change.

For example, suppose you create a formula that sums the values in the ProfitProfit column of the SalesSales table:

= SUM('Sales'[Profit]) . If you use this formula in a calculated column within the SalesSales table, the results for the

formula will be the same for the entire table, because the query context for the formula is always the entire data

set of the SalesSales table. Results will have profit for all regions, all products, all years, and so on.

However, users typically don't want to see the same result hundreds of times, but instead want to get the profit

for a particular year, a particular country, a particular product, or some combination of these, and then get a

grand total.

In a report, context is changed by filtering, adding or removing fields, and using slicers. For each change, the

query context in which the measure is evaluated. Therefore, the same formula, used in a measure, is evaluated in

a different query context for each cell.

Filter context is the set of values allowed in each column, or in the values retrieved from a related table. Filters

can be applied to the column in the designer, or in the presentation layer (reports and PivotTables). Filters can

also be defined explicitly by filter expressions within the formula.

Filter context is added when you specify filter constraints on the set of values allowed in a column or table, by

using arguments to a formula. Filter context applies on top of other contexts, such as row context or query

context.

In tabular models, there are many ways to create filter context. Within the context of clients that can consume

the model, such as Power BI reports, users can create filters on the fly by adding slicers or report filters on the

row and column headings. You can also specify filter expressions directly within the formula, to specify related

values, to filter tables that are used as inputs, or to dynamically get context for the values that are used in

calculations. You can also completely clear or selectively clear the filters on particular columns. This is very

useful when creating formulas that calculate grand totals.

To learn more about how to create filters within formulas, see the FILTER Function (DAX).

For an example of how filters can be cleared to create grand totals, see the ALL Function (DAX).

For examples of how to selectively clear and apply filters within formulas, see ALLEXCEPT.

When you create a DAX formula, the formula is first tested for valid syntax, and then tested to make sure the

names of the columns and tables included in the formula can be found in the current context. If any column or

table specified by the formula cannot be found, an error is returned.

Context during validation (and recalculation operations) is determined as described in the preceding sections, by

using the available tables in the model, any relationships between the tables, and any filters that have been

applied.

For example, if you have just imported some data into a new table and it is not related to any other tables (and

you have not applied any filters), the current context is the entire set of columns in the table. If the table is linked

by relationships to other tables, the current context includes the related tables. If you add a column from the

table to a report that has Slicers and maybe some report filters, the context for the formula is the subset of data

in each cell of the report.

Context is a powerful concept that can also make it difficult to troubleshoot formulas. We recommend that you

begin with simple formulas and relationships to see how context works. The following section provides some

examples of how formulas use different types of context to dynamically return results.

Operators

 Working with tables and columns

 Referring to tables and columns in formulasReferring to tables and columns in formulas

= SUM('New Sales'[Amount]) + SUM('Past Sales'[Amount])

 Table relationshipsTable relationships

The DAX language uses four different types of calculation operators in formulas:

Comparison operators to compare values and return a logical TRUE\FALSE value.

Arithmetic operators to perform arithmetic calculations that return numeric values.

Text concatenation operators to join two or more text strings.

Logical operators that combine two or more expressions to return a single result.

For detailed information about operators used in DAX formulas, see DAX operators.

Tables in tabular data models look like Excel tables, but are different in the way they work with data and with

formulas:

Formulas work only with tables and columns, not with individual cells, range references, or arrays.

Formulas can use relationships to get values from related tables. The values that are retrieved are always

related to the current row value.

You cannot have irregular or "ragged" data like you can in an Excel worksheet. Each row in a table must

contain the same number of columns. However, you can have empty values in some columns. Excel data

tables and tabular model data tables are not interchangeable.

Because a data type is set for each column, each value in that column must be of the same type.

You can refer to any table and column by using its name. For example, the following formula illustrates how to

refer to columns from two tables by using the fully qualified name:

When a formula is evaluated, the model designer first checks for general syntax, and then checks the names of

columns and tables that you provide against possible columns and tables in the current context. If the name is

ambiguous or if the column or table cannot be found, you will get an error on your formula (an #ERROR string

instead of a data value in cells where the error occurs). To learn more about naming requirements for tables,

columns, and other objects, see Naming Requirements in DAX syntax.

By creating relationships between tables, you gain the ability for related values in other tables to be used in

calculations. For example, you can use a calculated column to determine all the shipping records related to the

current reseller, and then sum the shipping costs for each. In many cases, however, a relationship might not be

necessary. You can use the LOOKUPVALUE function in a formula to return the value in result_columnName for

the row that meets criteria specified in the search_column and search_value arguments.

Many DAX functions require that a relationship exist between the tables, or among multiple tables, in order to

locate the columns that you have referenced and return results that make sense. Other functions will attempt to

identify the relationship; however, for best results you should always create a relationship where possible.

Tabular data models support multiple relationships among tables. To avoid confusion or incorrect results, only

one relationship at a time is designated as the active relationship, but you can change the active relationship as

necessary to traverse different connections in the data in calculations. USERELATIONSHIP function can be used

to specify one or more relationships to be used in a specific calculation.

It's important to observe these formula design rules when using relationships:

 Process and refresh

 Updates

 Troubleshooting

When tables are connected by a relationship, you must ensure the two columns used as keys have values

that match. Referential integrity is not enforced, therefore it is possible to have non-matching values in a

key column and still create a relationship. If this happens, you should be aware that blank values or non-

matching values might affect the results of formulas.

When you link tables in your model by using relationships, you enlarge the scope, or context, in which

your formulas are evaluated. Changes in context resulting from the addition of new tables, new

relationships, or from changes in the active relationship can cause your results to change in ways that

you might not anticipate. To learn more, see Context in this article.

Process and recalculation are two separate but related operations. You should thoroughly understand these

concepts when designing a model that contains complex formulas, large amounts of data, or data that is

obtained from external data sources.

Process (refresh) is updating the data in a model with new data from an external data source.

Recalculation is the process of updating the results of formulas to reflect any changes to the formulas

themselves and to reflect changes in the underlying data. Recalculation can affect performance in the following

ways:

The values in a calculated column are computed and stored in the model. To update the values in the

calculated column, you must process the model using one of three processing commands – Process Full,

Process Data, or Process Recalc. The result of the formula must always be recalculated for the entire

column, whenever you change the formula.

The values calculated by measures are dynamically evaluated whenever a user adds the measure to a

PivotTable or open a report; as the user modifies the context, values returned by the measure change. The

results of the measure always reflect the latest in the in-memory cache.

Processing and recalculation have no effect on row-level security formulas unless the result of a recalculation

returns a different value, thus making the row queryable or not queryable by role members.

DAX is constantly being improved. New and updated functions are released with the next available update,

which is usually monthly. Services are updated first, followed by installed applications like Power BI Desktop,

Excel, SQL Server Management Studio (SSMS), and Analysis Services project extension for Visual Studio (SSDT).

SQL Server Analysis Services is updated with the next cumulative update. New functions are first announced

and described in the DAX function reference coinciding with Power BI Desktop updates.

Not all functions are supported in earlier versions of SQL Server Analysis Services and Excel.

If you get an error when defining a formula, the formula might contain either a syntactic error, semantic error,

or calculation error.

Syntactic errors are the easiest to resolve. They typically involve a missing parenthesis or comma.

The other type of error occurs when the syntax is correct, but the value or a column referenced does not make

sense in the context of the formula. Such semantic and calculation errors might be caused by any of the

following problems:

The formula refers to a non-existing column, table, or function.

The formula appears to be correct, but when the data engine fetches the data, it finds a type mismatch and

 Apps and tools
 Power BI DesktopPower BI Desktop

 Power Pivot in ExcelPower Pivot in Excel

 Visual StudioVisual Studio

 SQL Server Management StudioSQL Server Management Studio

 DAX StudioDAX Studio

 Tabular EditorTabular Editor

raises an error.

The formula passes an incorrect number or type of arguments to a function.

The formula refers to a different column that has an error, and therefore its values are invalid.

The formula refers to a column that has not been processed, meaning it has metadata but no actual data to

use for calculations.

In the first four cases, DAX flags the entire column that contains the invalid formula. In the last case, DAX grays

out the column to indicate that the column is in an unprocessed state.

Power BI Desktop is a free data modeling and reporting application. The model designer includes a DAX editor

for creating DAX calculation formulas.

The Power Pivot in Excel models designer includes a DAX editor for creating DAX calculation formulas.

Visual Studio with Analysis Services projects extension (VSIX) is used to create Analysis Services model projects.

Tabular model designer, installed with the projects extension includes a DAX editor.

SQL Server Management Studio (SSMS) is an essential tool for working with Analysis Services. SSMS includes a

DAX query editor for querying both tabular and multidimensional models.

DAX Studio is an open-source client tool for creating and running DAX queries against Analysis Services, Power

BI Desktop, and Power Pivot in Excel models.

https://powerbi.microsoft.com/desktop/
https://support.office.com/article/power-pivot-powerful-data-analysis-and-data-modeling-in-excel-a9c2c6e2-cc49-4976-a7d7-40896795d045
https://marketplace.visualstudio.com/items?itemName=ProBITools.MicrosoftAnalysisServicesModelingProjects
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
http://daxstudio.org/

 Learning resources

 Community

Tabular Editor is an open-source tool that provides an intuitive, hierarchical view of every object in tabular

model metadata. Tabular Editor includes a DAX Editor with syntax highlighting, which provides an easy way to

edit measures, calculated column, and calculated table expressions.

When learning DAX, it's best to use the application you'll be using to create your data models. Analysis Services,

Power BI Desktop, and Power Pivot in Excel all have articles and tutorials that include lessons on creating

measures, calculated columns, and row-filters by using DAX. Here are some additional resources:

Videos

Use DAX in Power BI Desktop path in Microsoft Learn.

The Definitive Guide to DAX by Alberto Ferrari and Marco Russo (Microsoft Press). Now in its second edition,

this extensive guide provides basics to innovative high-performance techniques for beginning data modelers

and BI professionals.

DAX has a vibrant community always willing to share their expertise. Microsoft Power BI Community has a

special discussion forum just for DAX, DAX Commands and Tips.

https://tabulareditor.com/
https://docs.microsoft.com/en-us/learn/paths/dax-power-bi/
https://www.sqlbi.com/books/the-definitive-guide-to-dax-2nd-edition/
https://community.powerbi.com/
https://community.powerbi.com/t5/DAX-Commands-and-Tips/bd-p/DAXCommands

Videos
 10/26/2021 • 2 minutes to read

 DAX 101

 Advanced DAX

Whether you're using Power BI Desktop, Power Pivot in Excel, or Analysis Services, learning Data Analysis

Expressions (DAX) is essential to creating effective data models. Here are some videos to help you get started

using this powerful expression language.

In this DAX 101 video, Microsoft Partner, Alberto Ferrari introduces essential concepts in DAX. With practical and

clear examples, you will learn about measures, calculated columns, and basic data modeling expressions with

DAX.

In this advanced DAX video, Microsoft Partner, Alberto Ferrari describes DAX theory, filter and row context, and

other essential concepts in DAX.

https://www.youtube-nocookie.com/embed/klQAZLr5vxA
https://www.youtube-nocookie.com/embed/6ncHnWMEdic

DAX sample model
 10/26/2021 • 2 minutes to read

 Scenario

 Model structure

TA B L ETA B L E DESC RIP T IO NDESC RIP T IO N

CustomerCustomer Describes customers and their geographic location.
Customers purchase products online (Internet sales).

DateDate There are three relationships between the DateDate and SalesSales
tables, for order date, ship date, and due date. The order
date relationship is active. The company's reports sales using
a fiscal year that commences on July 1 of each year. The
table is marked as a date table using the DateDate column.

ProductProduct Stores finished products only.

ResellerReseller Describes resellers and their geographic location. Reseller on
sell products to their customers.

SalesSales Stores rows at sales order line grain. All financial values are in
US dollars (USD). The earliest order date is July 1, 2017, and
the latest order date is June 15, 2020.

Sales OrderSales Order Describes sales order and order line numbers, and also the
sales channel, which is either ResellerReseller or InternetInternet . This
table has a one-to-one relationship with the SalesSales table.

The Adventure Works DW 2020Adventure Works DW 2020 Power BI Desktop sample model is designed to support your DAX learning.

The model is based on the Adventure Works data warehouse sample for AdventureWorksDW2017—however,

the data has been modified to suit the objectives of the sample model.

The sample model does not contain any DAX formulas. It does however support hundreds or even thousands of

potential calculation formulas and queries. Some function examples, like those in CALCULATE, DATESBETWEEN,

DATESIN PERIOD, IF, and LOOKUPVALUE can be added to the sample model without modification. We're working

on including more examples in other function reference articles that work with the sample model.

The Adventure Works company represents a bicycle manufacturer that sells bicycles and accessories to global

markets. The company has their data warehouse data stored in an Azure SQL Database.

The model has seven tables:

https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure#data-warehouse-downloads

Sales Territor ySales Territor y Sales territories are organized into groups (North America,
Europe, and Pacific), countries, and regions. Only the United
States sells products at the region level.

TA B L ETA B L E DESC RIP T IO NDESC RIP T IO N

 Download sample

 See also

Download the Power BI Desktop sample model file here.

Learning path: Use DAX in Power BI Desktop

Questions? Try asking the Power BI Community

Suggestions? Contribute ideas to improve Power BI

https://aka.ms/dax-docs-sample-file
https://docs.microsoft.com/en-us/learn/paths/dax-power-bi/
https://community.powerbi.com/
https://ideas.powerbi.com

Appropriate use of error functions
 10/26/2021 • 2 minutes to read

 Recommendations

 Example

Profit Margin
= IF(ISERROR([Profit] / [Sales]))

As a data modeler, when you write a DAX expression that might raise an evaluation-time error, you can consider

using two helpful DAX functions.

The ISERROR function, which takes a single expression and returns TRUE if that expression results in error.

The IFERROR function, which takes two expressions. Should the first expression result in error, the value for

the second expression is returned. It is in fact a more optimized implementation of nesting the ISERROR

function inside an IF function.

However, while these functions can be helpful and can contribute to writing easy-to-understand expressions,

they can also significantly degrade the performance of calculations. It can happen because these functions

increase the number of storage engine scans required.

Most evaluation-time errors are due to unexpected BLANKs or zero values, or invalid data type conversion.

It's better to avoid using the ISERROR and IFERROR functions. Instead, apply defensive strategies when

developing the model and writing expressions. Strategies can include:

Ensuring quality data is loaded into the model:Ensuring quality data is loaded into the model: Use Power Query transformations to remove or

substitute invalid or missing values, and to set correct data types. A Power Query transformation can also

be used to filter rows when errors, like invalid data conversion, occur.

Data quality can also be controlled by setting the model column Is NullableIs Nullable property to Off, which will

fail the data refresh should BLANKs be encountered. If this failure occurs, data loaded as a result of a

successful refresh will remain in the tables.

Using the IF function:Using the IF function: The IF function logical test expression can determine whether an error result

would occur. Note, like the ISERROR and IFERROR functions, this function can result in additional storage

engine scans, but will likely perform better than them as no error needs to be raised.

Using error-tolerant functions:Using error-tolerant functions: Some DAX functions will test and compensate for error conditions.

These functions allow you to enter an alternate result that would be returned instead. The DIVIDE function

is one such example. For additional guidance about this function, read the DAX: DIVIDE function vs divide

operator (/) article.

The following measure expression tests whether an error would be raised. It returns BLANK in this instance

(which is the case when you do not provide the IF function with a value-if-false expression).

This next version of the measure expression has been improved by using the IFERROR function in place of the IF

and ISERROR functions.

Profit Margin
= IFERROR([Profit] / [Sales], BLANK())

Profit Margin
= DIVIDE([Profit], [Sales])

 See also

However, this final version of the measure expression achieves the same outcome, yet more efficiently and

elegantly.

Learning path: Use DAX in Power BI Desktop

Questions? Try asking the Power BI Community

Suggestions? Contribute ideas to improve Power BI

https://docs.microsoft.com/en-us/learn/paths/dax-power-bi/
https://community.powerbi.com/
https://ideas.powerbi.com

Avoid converting BLANKs to values
 10/26/2021 • 2 minutes to read

Sales (No Blank) =
IF(
 ISBLANK([Sales]),
 0,
 [Sales]
)

Profit Margin =
DIVIDE([Profit], [Sales], 0)

As a data modeler, when writing measure expressions you might come across cases where a meaningful value

can't be returned. In these instances, you may be tempted to return a value—like zero—instead. It's suggested

you carefully determine whether this design is efficient and practical.

Consider the following measure definition that explicitly converts BLANK results to zero.

Consider another measure definition that also converts BLANK results to zero.

The DIVIDE function divides the ProfitProfit measure by the SalesSales measure. Should the result be zero or BLANK, the

third argument—the alternate result (which is optional)—is returned. In this example, because zero is passed as

the alternate result, the measure is guaranteed to always return a value.

These measure designs are inefficient and lead to poor report designs.

When they're added to a report visual, Power BI attempts to retrieve all groupings within the filter context. The

evaluation and retrieval of large query results often leads to slow report rendering. Each example measure

effectively turns a sparse calculation into a dense one, forcing Power BI to use more memory than necessary.

Also, too many groupings often overwhelm your report users.

Let's see what happens when the Profit MarginProfit Margin measure is added to a table visual, grouping by customer.

The table visual displays an overwhelming number of rows. (There are in fact 18,484 customers in the model,

and so the table attempts to display all of them.) Notice that the customers in view haven't achieved any sales.

Yet, because the Profit MarginProfit Margin measure always returns a value, they are displayed.

NOTENOTE

Profit Margin =
DIVIDE([Profit], [Sales])

TIPTIP

 Recommendation

 See also

When there are too many data points to display in a visual, Power BI may use data reduction strategies to remove or

summarize large query results. For more information, see Data point limits and strategies by visual type.

Let's see what happens when the Profit MarginProfit Margin measure definition is improved. It now returns a value only

when the SalesSales measure isn't BLANK (or zero).

The table visual now displays only customers who have made sales within the current filter context. The

improved measure results in a more efficient and practical experience for your report users.

When necessary, you can configure a visual to display all groupings (that return values or BLANK) within the filter context

by enabling the Show Items With No Data option.

It's recommended that your measures return BLANK when a meaningful value cannot be returned.

This design approach is efficient, allowing Power BI to render reports faster. Also, returning BLANK is better

because report visuals—by default—eliminate groupings when summarizations are BLANK.

Learning path: Use DAX in Power BI Desktop

Questions? Try asking the Power BI Community

Suggestions? Contribute ideas to improve Power BI

https://docs.microsoft.com/en-us/power-bi/visuals/power-bi-data-points
https://docs.microsoft.com/en-us/power-bi/create-reports/desktop-show-items-no-data
https://docs.microsoft.com/en-us/learn/paths/dax-power-bi/
https://community.powerbi.com/
https://ideas.powerbi.com

Avoid using FILTER as a filter argument
 10/26/2021 • 2 minutes to read

NOTENOTE

Red Sales =
CALCULATE(
 [Sales],
 FILTER('Product', 'Product'[Color] = "Red")
)

Red Sales =
CALCULATE(
 [Sales],
 KEEPFILTERS('Product'[Color] = "Red")
)

As a data modeler, it's common you'll write DAX expressions that need to be evaluated in a modified filter

context. For example, you can write a measure definition to calculate sales for "high margin products". We'll

describe this calculation later in this article.

This article is especially relevant for model calculations that apply filters to Import tables.

The CALCULATE and CALCULATETABLE DAX functions are important and useful functions. They let you write

calculations that remove or add filters, or modify relationship paths. It's done by passing in filter arguments,

which are either Boolean expressions, table expressions, or special filter functions. We'll only discuss Boolean

and table expressions in this article.

Consider the following measure definition, which calculates red product sales by using a table expression. It will

replace any filters that might be applied to the ProductProduct table.

The CALCULATE function accepts a table expression returned by the FILTER DAX function, which evaluates its

filter expression for each row of the ProductProduct table. It achieves the correct result—the sales result for red

products. However, it could be achieved much more efficiently by using a Boolean expression.

Here's an improved measure definition, which uses a Boolean expression instead of the table expression. The

KEEPFILTERS DAX function ensures any existing filters applied to the ColorColor column are preserved, and not

overwritten.

It's recommended you pass filter arguments as Boolean expressions, whenever possible. It's because Import

model tables are in-memory column stores. They are explicitly optimized to efficiently filter columns in this way.

There are, however, restrictions that apply to Boolean expressions when they're used as filter arguments. They:

Cannot compare columns to other columns

Cannot reference a measure

Cannot use nested CALCULATE functions

Cannot use functions that scan or return a table

It means that you'll need to use table expressions for more complex filter requirements.

Consider now a different measure definition.

High Margin Product Sales =
CALCULATE(
 [Sales],
 FILTER(
 'Product',
 'Product'[ListPrice] > 'Product'[StandardCost] * 2
)
)

Sales for Profitable Months =
CALCULATE(
 [Sales],
 FILTER(
 VALUES('Date'[Month]),
 [Profit] > 0)
)
)

 Recommendations

 See also

The definition of a high margin product is one that has a list price exceeding double its standard cost. In this

example, the FILTER function must be used. It's because the filter expression is too complex for a Boolean

expression.

Here's one more example. The requirement this time is to calculate sales, but only for months that have achieved

a profit.

In this example, the FILTER function must also be used. It's because it requires evaluating the ProfitProfit measure to

eliminate those months that didn't achieve a profit. It's not possible to use a measure in a Boolean expression

when it's used as a filter argument.

For best performance, it's recommended you use Boolean expressions as filter arguments, whenever possible.

Therefore, the FILTER function should only be used when necessary. You can use it to perform filter complex

column comparisons. These column comparisons can involve:

Measures

Other columns

Using the OR DAX function, or the OR logical operator (||)

Filter functions (DAX)

Learning path: Use DAX in Power BI Desktop

Questions? Try asking the Power BI Community

Suggestions? Contribute ideas to improve Power BI

https://docs.microsoft.com/en-us/learn/paths/dax-power-bi/
https://community.powerbi.com/
https://ideas.powerbi.com

Column and measure references
 10/26/2021 • 2 minutes to read

 Columns

Profit = [Sales] - [Cost]

Profit = Orders[Sales] - Orders[Cost]

 Measures

 Recommendations

As a data modeler, your DAX expressions will refer to model columns and measures. Columns and measures are

always associated with model tables, but these associations are different, so we have different recommendations

on how you'll reference them in your expressions.

A column is a table-level object, and column names must be unique within a table. So it's possible that the same

column name is used multiple times in your model—providing they belong to different tables. There's one more

rule: a column name cannot have the same name as a measure name or hierarchy name that exists in the same

table.

In general, DAX will not force using a fully qualified reference to a column. A fully qualified reference means that

the table name precedes the column name.

Here's an example of a calculated column definition using only column name references. The SalesSales and CostCost

columns both belong to a table named OrdersOrders .

The same definition can be rewritten with fully qualified column references.

Sometimes, however, you'll be required to use fully qualified column references when Power BI detects

ambiguity. When entering a formula, a red squiggly and error message will alert you. Also, some DAX functions

like the LOOKUPVALUE DAX function, require the use of fully qualified columns.

It's recommended you always fully qualify your column references. The reasons are provided in the

Recommendations section.

A measure is a model-level object. For this reason, measure names must be unique within the model. However,

in the FieldsFields pane, report authors will see each measure associated with a single model table. This association is

set for cosmetic reasons, and you can configure it by setting the Home TableHome Table property for the measure. For

more information, see Measures in Power BI Desktop (Organizing your measures).

It's possible to use a fully qualified measure in your expressions. DAX intellisense will even offer the suggestion.

However, it isn't necessary, and it's not a recommended practice. If you change the home table for a measure,

any expression that uses a fully qualified measure reference to it will break. You'll then need to edit each broken

formula to remove (or update) the measure reference.

It's recommended you never qualify your measure references. The reasons are provided in the

Recommendations section.

https://docs.microsoft.com/en-us/power-bi/transform-model/desktop-measures#organizing-your-measures

 See also

Our recommendations are simple and easy to remember:

Always use fully qualified column references

Never use fully qualified measure references

Here's why:

Formula entr yFormula entr y : Expressions will be accepted, as there won't be any ambiguous references to resolve. Also,

you'll meet the requirement for those DAX functions that require fully qualified column references.

RobustnessRobustness : Expressions will continue to work, even when you change a measure home table property.

ReadabilityReadability : Expressions will be quick and easy to understand—you'll quickly determine that it's a column or

measure, based on whether it's fully qualified or not.

Learning path: Use DAX in Power BI Desktop

Questions? Try asking the Power BI Community

Suggestions? Contribute ideas to improve Power BI

https://docs.microsoft.com/en-us/learn/paths/dax-power-bi/
https://community.powerbi.com/
https://ideas.powerbi.com

DIVIDE function vs. divide operator (/)
 10/26/2021 • 2 minutes to read

DIVIDE(<numerator>, <denominator> [,<alternateresult>])

 Example

Profit Margin =
IF(
 OR(
 ISBLANK([Sales]),
 [Sales] == 0
),
 BLANK(),
 [Profit] / [Sales]
)

Profit Margin =
DIVIDE([Profit], [Sales])

 Recommendations

As a data modeler, when you write a DAX expression to divide a numerator by a denominator, you can choose to

use the DIVIDE function or the divide operator (/ - forward slash).

When using the DIVIDE function, you must pass in numerator and denominator expressions. Optionally, you can

pass in a value that represents an alternate result.

The DIVIDE function was designed to automatically handle division by zero cases. If an alternate result is not

passed in, and the denominator is zero or BLANK, the function returns BLANK. When an alternate result is

passed in, it's returned instead of BLANK.

The DIVIDE function is convenient because it saves your expression from having to first test the denominator

value. The function is also better optimized for testing the denominator value than the IF function. The

performance gain is significant since checking for division by zero is expensive. Further using DIVIDE results in a

more concise and elegant expression.

The following measure expression produces a safe division, but it involves using four DAX functions.

This measure expression achieves the same outcome, yet more efficiently and elegantly.

It's recommended that you use the DIVIDE function whenever the denominator is an expression that could

return zero or BLANK.

In the case that the denominator is a constant value, we recommend that you use the divide operator. In this

case, the division is guaranteed to succeed, and your expression will perform better because it will avoid

unnecessary testing.

Carefully consider whether the DIVIDE function should return an alternate value. For measures, it's usually a

better design that they return BLANK. Returning BLANK is better because report visuals—by default—eliminate

groupings when summarizations are BLANK. It allows the visual to focus attention on groups where data exists.

 See also

When necessary, in Power BI, you can configure the visual to display all groups (that return values or BLANK)

within the filter context by enabling the Show items with no data option.

Learning path: Use DAX in Power BI Desktop

Questions? Try asking the Power BI Community

Suggestions? Contribute ideas to improve Power BI

https://docs.microsoft.com/en-us/power-bi/create-reports/desktop-show-items-no-data
https://docs.microsoft.com/en-us/learn/paths/dax-power-bi/
https://community.powerbi.com/
https://ideas.powerbi.com

Use SELECTEDVALUE instead of VALUES
 10/26/2021 • 2 minutes to read

Australian Sales Tax =
IF(
 HASONEVALUE(Customer[Country-Region]),
 IF(
 VALUES(Customer[Country-Region]) = "Australia",
 [Sales] * 0.10
)
)

 Recommendation

Australian Sales Tax =
IF(
 SELECTEDVALUE(Customer[Country-Region]) = "Australia",
 [Sales] * 0.10
)

TIPTIP

 See also

As a data modeler, sometimes you might need to write a DAX expression that tests whether a column is filtered

by a specific value.

In earlier versions of DAX, this requirement was safely achieved by using a pattern involving three DAX

functions; IF, HASONEVALUE and VALUES. The following measure definition presents an example. It calculates

the sales tax amount, but only for sales made to Australian customers.

In the example, the HASONEVALUE function returns TRUE only when a single value of the Countr y-RegionCountr y-Region

column is visible in the current filter context. When it's TRUE, the VALUES function is compared to the literal text

"Australia". When the VALUES function returns TRUE, the SalesSales measure is multiplied by 0.10 (representing

10%). If the HASONEVALUE function returns FALSE—because more than one value filters the column—the first

IF function returns BLANK.

The use of the HASONEVALUE is a defensive technique. It's required because it's possible that multiple values

filter the Countr y-RegionCountr y-Region column. In this case, the VALUES function returns a table of multiple rows.

Comparing a table of multiple rows to a scalar value results in an error.

It's recommended that you use the SELECTEDVALUE function. It achieves the same outcome as the pattern

described in this article, yet more efficiently and elegantly.

Using the SELECTEDVALUE function, the example measure definition is now rewritten.

It's possible to pass an alternate result value into the SELECTEDVALUE function. The alternate result value is returned

when either no filters—or multiple filters—are applied to the column.

Learning path: Use DAX in Power BI Desktop

Questions? Try asking the Power BI Community

https://docs.microsoft.com/en-us/learn/paths/dax-power-bi/
https://community.powerbi.com/

Suggestions? Contribute ideas to improve Power BI

https://ideas.powerbi.com

Use COUNTROWS instead of COUNT
 10/26/2021 • 2 minutes to read

Sales Orders =
COUNT(Sales[OrderDate])

Sales Orders =
COUNTROWS(Sales)

 Recommendation

 See also

As a data modeler, sometimes you might need to write a DAX expression that counts table rows. The table could

be a model table or an expression that returns a table.

Your requirement can be achieved in two ways. You can use the COUNT function to count column values, or you

can use the COUNTROWS function to count table rows. Both functions will achieve the same result, providing

that the counted column contains no BLANKs.

The following measure definition presents an example. It calculates the number of OrderDateOrderDate column values.

Providing that the granularity of the SalesSales table is one row per sales order, and the OrderDateOrderDate column does

not contain BLANKs, then the measure will return a correct result.

However, the following measure definition is a better solution.

There are three reasons why the second measure definition is better :

It's more efficient, and so it will perform better.

It doesn't consider BLANKs contained in any column of the table.

The intention of formula is clearer, to the point of being self-describing.

When it's your intention to count table rows, it's recommended you always use the COUNTROWS function.

Learning path: Use DAX in Power BI Desktop

Questions? Try asking the Power BI Community

Suggestions? Contribute ideas to improve Power BI

https://docs.microsoft.com/en-us/learn/paths/dax-power-bi/
https://community.powerbi.com/
https://ideas.powerbi.com

Use variables to improve your DAX formulas
 10/26/2021 • 3 minutes to read

Sales YoY Growth % =
DIVIDE(
 ([Sales] - CALCULATE([Sales], PARALLELPERIOD('Date'[Date], -12, MONTH))),
 CALCULATE([Sales], PARALLELPERIOD('Date'[Date], -12, MONTH))
)

 Improve performance

Sales YoY Growth % =
VAR SalesPriorYear =
 CALCULATE([Sales], PARALLELPERIOD('Date'[Date], -12, MONTH))
RETURN
 DIVIDE(([Sales] - SalesPriorYear), SalesPriorYear)

 Improve readability

 Simplify debugging

As a data modeler, writing and debugging some DAX calculations can be challenging. It's common that complex

calculation requirements often involve writing compound or complex expressions. Compound expressions can

involve the use of many nested functions, and possibly the reuse of expression logic.

Using variables in your DAX formulas can help you write more complex and efficient calculations. Variables can

improve performance and reliability, and readability, and reduce complexity.

In this article, we'll demonstrate the first three benefits by using an example measure for year-over-year (YoY)

sales growth. (The formula for YoY sales growth is: period sales fewer sales for the same period last year, divided

by sales for the same period last year.)

Let's start with the following measure definition.

The measure produces the correct result, yet let's now see how it can be improved.

Notice that the formula repeats the expression that calculates "same period last year". This formula is inefficient,

as it requires Power BI to evaluate the same expression twice. The measure definition can be made more

efficient by using a variable, VAR.

The following measure definition represents an improvement. It uses an expression to assign the "same period

last year" result to a variable named SalesPriorYearSalesPriorYear . The variable is then used twice in the RETURN expression.

The measure continues to produce the correct result, and does so in about half the query time.

In the previous measure definition, notice how the choice of variable name makes the RETURN expression

simpler to understand. The expression is short and self-describing.

Variables can also help you debug a formula. To test an expression assigned to a variable, you temporarily

rewrite the RETURN expression to output the variable.

The following measure definition returns only the SalesPriorYearSalesPriorYear variable. Notice how it comments-out the

Sales YoY Growth % =
VAR SalesPriorYear =
 CALCULATE([Sales], PARALLELPERIOD('Date'[Date], -12, MONTH))
RETURN
 --DIVIDE(([Sales] - SalesPriorYear), SalesPriorYear)
 SalesPriorYear

 Reduce complexity

Subcategory Sales Rank =
COUNTROWS(
 FILTER(
 Subcategory,
 EARLIER(Subcategory[Subcategory Sales]) < Subcategory[Subcategory Sales]
)
) + 1

Subcategory Sales Rank =
VAR CurrentSubcategorySales = Subcategory[Subcategory Sales]
RETURN
 COUNTROWS(
 FILTER(
 Subcategory,
 CurrentSubcategorySales < Subcategory[Subcategory Sales]
)
) + 1

 See also

intended RETURN expression. This technique allows you to easily revert it back once your debugging is

complete.

In earlier versions of DAX, variables were not yet supported. Complex expressions that introduced new filter

contexts were required to use the EARLIER or EARLIEST DAX functions to reference outer filter contexts.

Unfortunately, data modelers found these functions difficult to understand and use.

Variables are always evaluated outside the filters your RETURN expression applies. For this reason, when you

use a variable within a modified filter context, it achieves the same result as the EARLIEST function. The use of

the EARLIER or EARLIEST functions can therefore be avoided. It means you can now write formulas that are less

complex, and that are easier to understand.

Consider the following calculated column definition added to the Subcategor ySubcategor y table. It evaluates a rank for

each product subcategory based on the Subcategor y SalesSubcategor y Sales column values.

The EARLIER function is used to refer to the Subcategor y SalesSubcategor y Sales column value in the current row context.

The calculated column definition can be improved by using a variable instead of the EARLIER function. The

CurrentSubcategor ySalesCurrentSubcategor ySales variable stores the Subcategor y SalesSubcategor y Sales column value in the current row context,

and the RETURN expression uses it within a modified filter context.

VAR DAX article

Learning path: Use DAX in Power BI Desktop

Questions? Try asking the Power BI Community

https://docs.microsoft.com/en-us/dax/earliest-function-dax
https://docs.microsoft.com/en-us/learn/paths/dax-power-bi/
https://community.powerbi.com/

DAX function reference
 10/26/2021 • 2 minutes to read

IMPORTANTIMPORTANT

 In this section

The DAX function reference provides detailed information including syntax, parameters, return values, and

examples for each of the over 250 functions used in Data Analysis Expression (DAX) formulas.

Not all DAX functions are supported or included in earlier versions of Power BI Desktop, Analysis Services, and Power

Pivot in Excel.

New DAX functions - These functions are new or are existing functions that have been significantly updated.

Aggregation functions - These functions calculate a (scalar) value such as count, sum, average, minimum, or

maximum for all rows in a column or table as defined by the expression.

Date and time functions - These functions in DAX are similar to date and time functions in Microsoft Excel.

However, DAX functions are based on the datetime data types used by Microsoft SQL Server.

Filter functions - These functions help you return specific data types, look up values in related tables, and filter

by related values. Lookup functions work by using tables and relationships between them. Filtering functions let

you manipulate data context to create dynamic calculations.

Financial functions - These functions are used in formulas that perform financial calculations, such as net

present value and rate of return.

Information functions - These functions look at a table or column provided as an argument to another function

and returns whether the value matches the expected type. For example, the ISERROR function returns TRUE if

the value you reference contains an error.

Logical functions - These functions return information about values in an expression. For example, the TRUE

function lets you know whether an expression that you are evaluating returns a TRUE value.

Math and Trig functions - Mathematical functions in DAX are similar to Excel's mathematical and trigonometric

functions. However, there are some differences in the numeric data types used by DAX functions.

Other functions - These functions perform unique actions that cannot be defined by any of the categories most

other functions belong to.

Parent and Child functions - These functions help users manage data that is presented as a parent/child

hierarchy in their data models.

Relationship functions - These functions are for managing and utilizing relationships between tables. For

example, you can specify a particular relationship to be used in a calculation.

Statistical functions - These functions calculate values related to statistical distributions and probability, such as

standard deviation and number of permutations.

Table manipulation functions - These functions return a table or manipulate existing tables.

Text functions - With these functions, you can return part of a string, search for text within a string, or

concatenate string values. Additional functions are for controlling the formats for dates, times, and numbers.

 See also

Time intelligence functions - These functions help you create calculations that use built-in knowledge about

calendars and dates. By using time and date ranges in combination with aggregations or calculations, you can

build meaningful comparisons across comparable time periods for sales, inventory, and so on.

DAX Syntax Reference

DAX Operator Reference

DAX Parameter-Naming Conventions

New DAX functions
 10/26/2021 • 2 minutes to read

IMPORTANTIMPORTANT

 New functions

F UN C T IO NF UN C T IO N M O N T HM O N T H DESC RIP T IO NDESC RIP T IO N

BITAND November, 2021 Returns a bitwise 'AND' of two
numbers.

BITLSHIFT November, 2021 Returns a number shifted left by the
specified number of bits.

BITOR November, 2021 Returns a bitwise 'OR' of two numbers.

BITRSHIFT November, 2021 Returns a number shifted right by the
specified number of bits.

BITXOR November, 2021 Returns a bitwise 'XOR' of two
numbers.

IF.EAGER March, 2021 Checks a condition, and returns one
value when TRUE, otherwise it returns
a second value.

 Updated functions

F UN C T IO NF UN C T IO N M O N T HM O N T H DESC RIP T IO NDESC RIP T IO N

CALCULATE September, 2021 Support for aggregation functions in
boolean filter expressions.

CALCULATETABLE September, 2021 Support for aggregation functions in
boolean filter expressions.

DAX is continuously being improved with new functions and functionality to support new features. New

functions and updates are included in service, application, and tool updates which in most cases are monthly.

While functions and functionality are being updated all the time, only those updates that have a visible and

functional change exposed to users are described in documentation. New functions and updates to existing

functions within the past year are shown here.

Not all functions are supported in all versions of Power BI Desktop, Analysis Services, and Power Pivot in Excel. New and

updated functions are typically first introduced in Power BI Desktop, and then later in Analysis Services, Power Pivot in

Excel, and tools.

FORMAT September, 2021 Additional locale_name parameter that
specifies the name of a locale to be
used by format_string.

XIRR September, 2021 Additional alternateResult parameter
that specifies a result to be returned
instead of an error if XIRR cannot
determine a solution.

CROSSFILTER April, 2021 Additional options for the Direction
parameter.

CALCULATE March, 2021 Support for OR (||) operator when
there are multiple filters.

F UN C T IO NF UN C T IO N M O N T HM O N T H DESC RIP T IO NDESC RIP T IO N

Aggregation functions
 10/26/2021 • 2 minutes to read

 In this category

F UN C T IO NF UN C T IO N DESC RIP T IO NDESC RIP T IO N

APPROXIMATEDISTINCTCOUNT Returns the approximate number of rows that contain
distinct values in a column.

AVERAGE Returns the average (arithmetic mean) of all the numbers in
a column.

AVERAGEA Returns the average (arithmetic mean) of the values in a
column.

AVERAGEX Calculates the average (arithmetic mean) of a set of
expressions evaluated over a table.

COUNT Counts the number of cells in a column that contain
numbers.

COUNTA Counts the number of cells in a column that are not empty.

COUNTAX Counts nonblank results when evaluating the result of an
expression over a table.

COUNTBLANK Counts the number of blank cells in a column.

COUNTROWS Counts the number of rows in the specified table, or in a
table defined by an expression.

COUNTX Counts the number of rows that contain a number or an
expression that evaluates to a number, when evaluating an
expression over a table.

DISTINCTCOUNT Counts the number of distinct values in a column.

DISTINCTCOUNTNOBLANK Counts the number of distinct values in a column.

MAX Returns the largest numeric value in a column, or between
two scalar expressions.

MAXA Returns the largest value in a column.

MAXX Evaluates an expression for each row of a table and returns
the largest numeric value.

Aggregation functions calculate a (scalar) value such as count, sum, average, minimum, or maximum for all rows

in a column or table as defined by the expression.

MIN Returns the smallest numeric value in a column, or between
two scalar expressions.

MINA Returns the smallest value in a column, including any logical
values and numbers represented as text.

MINX Returns the smallest numeric value that results from
evaluating an expression for each row of a table.

PRODUCT Returns the product of the numbers in a column.

PRODUCTX Returns the product of an expression evaluated for each row
in a table.

SUM Adds all the numbers in a column.

SUMX Returns the sum of an expression evaluated for each row in a
table.

F UN C T IO NF UN C T IO N DESC RIP T IO NDESC RIP T IO N

APPROXIMATEDISTINCTCOUNT
 10/26/2021 • 2 minutes to read

 Syntax

APPROXIMATEDISTINCTCOUNT(<columnName>)

 ParametersParameters

T ERMT ERM DESC RIP T IO NDESC RIP T IO N

column The column that contains the values to be counted. This
cannot be an expression.

 Return value

 Remarks

Returns the approximate number of rows that contain distinct values in a column. This function can query large

amounts of data with potentially better performance than DISTINCTCOUNT, with slight deviation from the exact

result.

The approximate number of distinct values in column.

The only argument to this function is a column. You can use columns containing any type of data. When the

function finds no rows to count, it returns a BLANK, otherwise it returns the count of distinct values.

AVERAGE
 10/26/2021 • 2 minutes to read

 Syntax

AVERAGE(<column>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

column The column that contains the numbers for which you want
the average.

 Return value

 Remarks

 Example

= AVERAGE(InternetSales[ExtendedSalesAmount])

Returns the average (arithmetic mean) of all the numbers in a column.

Returns a decimal number that represents the arithmetic mean of the numbers in the column.

This function takes the specified column as an argument and finds the average of the values in that

column. If you want to find the average of an expression that evaluates to a set of numbers, use the

AVERAGEX function instead.

Nonnumeric values in the column are handled as follows:

If the column contains text, no aggregation can be performed, and the functions returns blanks.

If the column contains logical values or empty cells, those values are ignored.

Cells with the value zero are included.

When you average cells, you must keep in mind the difference between an empty cell and a cell that

contains the value 0 (zero). When a cell contains 0, it is added to the sum of numbers and the row is

counted among the number of rows used as the divisor. However, when a cell contains a blank, the row is

not counted.

Whenever there are no rows to aggregate, the function returns a blank. However, if there are rows, but

none of them meet the specified criteria, the function returns 0. Excel also returns a zero if no rows are

found that meet the conditions.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following formula returns the average of the values in the column, ExtendedSalesAmount, in the table,

InternetSales.

 Related functions
The AVERAGEX function can take as its argument an expression that is evaluated for each row in a table. This

enables you to perform calculations and then take the average of the calculated values.

The AVERAGEA function takes a column as its argument, but otherwise is like the Excel function of the same

name. By using the AVERAGEA function, you can calculate a mean on a column that contains empty values.

AVERAGEA
 10/26/2021 • 2 minutes to read

 Syntax

AVERAGEA(<column>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

column A column that contains the values for which you want the
average.

 Return value

 Remarks

 Example

T RA N SA C T IO N IDT RA N SA C T IO N ID A M O UN TA M O UN T RESULTRESULT

0000123 1 Counts as 1

Returns the average (arithmetic mean) of the values in a column. Handles text and non-numeric values.

A decimal number.

The AVERAGEA function takes a column and averages the numbers in it, but also handles non-numeric

data types according to the following rules:

Values that evaluates to TRUE count as 1.

Values that evaluate to FALSE count as 0 (zero).

Values that contain non-numeric text count as 0 (zero).

Empty text ("") counts as 0 (zero).

If you do not want to include logical values and text representations of numbers in a reference as part of

the calculation, use the AVERAGE function.

Whenever there are no rows to aggregate, the function returns a blank. However, if there are rows, but

none of them meet the specified criteria, the function returns 0. Microsoft Excel also returns a zero if no

rows are found that meet the conditions.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following example returns the average of non-blank cells in the referenced column, given the following

table. If you used the AVERAGE function, the mean would be 21/2; with the AVERAGEA function, the result is

22/5.

0000124 20 Counts as 20

0000125 n/a Counts as 0

0000126 Counts as 0

0000126 TRUE Counts as 1

T RA N SA C T IO N IDT RA N SA C T IO N ID A M O UN TA M O UN T RESULTRESULT

= AVERAGEA([Amount])

 See also
AVERAGE function

AVERAGEX function

Statistical functions

AVERAGEX
 10/26/2021 • 2 minutes to read

 Syntax

AVERAGEX(<table>,<expression>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

table Name of a table, or an expression that specifies the table
over which the aggregation can be performed.

expression An expression with a scalar result, which will be evaluated for
each row of the table in the first argument.

 Return value

 Remarks

 Example

= AVERAGEX(InternetSales, InternetSales[Freight]+ InternetSales[TaxAmt])

 See also

Calculates the average (arithmetic mean) of a set of expressions evaluated over a table.

A decimal number.

The AVERAGEX function enables you to evaluate expressions for each row of a table, and then take the

resulting set of values and calculate its arithmetic mean. Therefore, the function takes a table as its first

argument, and an expression as the second argument.

In all other respects, AVERAGEX follows the same rules as AVERAGE. You cannot include non-numeric or

null cells. Both the table and expression arguments are required.

When there are no rows to aggregate, the function returns a blank. When there are rows, but none of

them meet the specified criteria, then the function returns 0.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following example calculates the average freight and tax on each order in the InternetSales table, by first

summing Freight plus TaxAmt in each row, and then averaging those sums.

If you use multiple operations in the expression used as the second argument, you must use parentheses to

control the order of calculations. For more information, see DAX Syntax Reference.

AVERAGE function

AVERAGEA function

Statistical functions

COUNT
 10/26/2021 • 2 minutes to read

 Syntax

COUNT(<column>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

column The column that contains the values to be counted.

 Return value

 Remarks

 Example

= COUNT([ShipDate])

 See also

The COUNT function counts the number of cells in a column that contain non-blank values.

A whole number.

The only argument allowed to this function is a column. The COUNT function counts rows that contain

the following kinds of values:

Numbers

Dates

Strings

When the function finds no rows to count, it returns a blank.

Blank values are skipped. TRUE/FALSE values are not supported.

If you want to evaluate a column of TRUE/FALSE values, use the COUNTA function.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

For best practices when using COUNT, see Use COUNTROWS instead of COUNT.

The following example shows how to count the number of values in the column, ShipDate.

To count logical values or text, use the COUNTA or COUNTAX functions.

COUNTA function

COUNTAX function

COUNTX function

Statistical functions

COUNTA
 10/26/2021 • 2 minutes to read

 Syntax

COUNTA(<column>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

column The column that contains the values to be counted

 Return value

 Remarks

 Example

= COUNTA('Reseller'[Phone])

 See also

The COUNTA function counts the number of cells in a column that are not empty.

A whole number.

When the function does not find any rows to count, the function returns a blank.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following example returns all rows in the Reseller table that have any kind of value in the column that

stores phone numbers. Because the table name does not contain any spaces, the quotation marks are optional.

COUNT function

COUNTAX function

COUNTX function

Statistical functions

COUNTAX
 10/26/2021 • 2 minutes to read

 Syntax

COUNTAX(<table>,<expression>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

table The table containing the rows for which the expression will
be evaluated.

expression The expression to be evaluated for each row of the table.

 Return value

 Remarks

 Example

= COUNTAX(FILTER('Reseller',[Status]="Active"),[Phone])

 See also

The COUNTAX function counts nonblank results when evaluating the result of an expression over a table. That is,

it works just like the COUNTA function, but is used to iterate through the rows in a table and count rows where

the specified expressions results in a non-blank result.

A whole number.

Like the COUNTA function, the COUNTAX function counts cells containing any type of information,

including other expressions. For example, if the column contains an expression that evaluates to an empty

string, the COUNTAX function treats that result as non-blank. Usually the COUNTAX function does not

count empty cells but in this case the cell contains a formula, so it is counted.

Whenever the function finds no rows to aggregate, the function returns a blank.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following example counts the number of nonblank rows in the column, Phone, using the table that results

from filtering the Reseller table on [Status] = ActiveActive.

COUNT function

COUNTA function

COUNTX function

Statistical functions

COUNTBLANK
 10/26/2021 • 2 minutes to read

 Syntax

COUNTBLANK(<column>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

column The column that contains the blank cells to be counted.

 Return value

 Remarks

 Example

= COUNTBLANK(Reseller[BankName])

 See also

Counts the number of blank cells in a column.

A whole number. If no rows are found that meet the condition, blanks are returned.

The only argument allowed to this function is a column. You can use columns containing any type of data,

but only blank cells are counted. Cells that have the value zero (0) are not counted, as zero is considered a

numeric value and not a blank.

Whenever there are no rows to aggregate, the function returns a blank. However, if there are rows, but

none of them meet the specified criteria, the function returns 0. Microsoft Excel also returns a zero if no

rows are found that meet the conditions.

In other words, if the COUNTBLANK function finds no blanks, the result will be zero, but if there are no

rows to check, the result will be blank.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following example shows how to count the number of rows in the table Reseller that have blank values for

BankName.

To count logical values or text, use the COUNTA or COUNTAX functions.

COUNT function

COUNTA function

COUNTAX function

COUNTX function

Statistical functions

COUNTROWS
 10/26/2021 • 2 minutes to read

 Syntax

COUNTROWS([<table>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

table (Optional) The name of the table that contains the rows to
be counted, or an expression that returns a table. When not
provided, the default value is the home table of the current
expression.

 Return value

 Remarks

 Example 1

= COUNTROWS('Orders')

 Example 2

The COUNTROWS function counts the number of rows in the specified table, or in a table defined by an

expression.

A whole number.

This function can be used to count the number of rows in a base table, but more often is used to count

the number of rows that result from filtering a table, or applying context to a table.

Whenever there are no rows to aggregate, the function returns a blank. However, if there are rows, but

none of them meet the specified criteria, the function returns 0. Microsoft Excel also returns a zero if no

rows are found that meet the conditions.

To learn more about best practices when using COUNT and COUNTROWS, see Use COUNTROWS instead

of COUNT in DAX.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following example shows how to count the number of rows in the table Orders. The expected result is

52761.

The following example demonstrates how to use COUNTROWS with a row context. In this scenario, there are

two sets of data that are related by order number. The table Reseller contains one row for each reseller ; the table

= COUNTROWS(RELATEDTABLE(ResellerSales))

RESEL L ERKEYRESEL L ERKEY C A L C UL AT EDC O L UM N 1C A L C UL AT EDC O L UM N 1

1 73

2 70

3 394

 See also

ResellerSales contains multiple rows for each order, each row containing one order for a particular reseller. The

tables are connected by a relationship on the column, ResellerKey.

The formula gets the value of ResellerKey and then counts the number of rows in the related table that have the

same reseller ID. The result is output in the column, CalculatedColumn1CalculatedColumn1 .

The following table shows a portion of the expected results:

COUNT function

COUNTA function

COUNTAX function

COUNTX function

Statistical functions

COUNTX
 10/26/2021 • 2 minutes to read

 Syntax

COUNTX(<table>,<expression>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

table The table containing the rows to be counted.

expression An expression that returns the set of values that contains
the values you want to count.

 Return value

 Remarks

 Example 1

= COUNTX(Product,[ListPrice])

 Example 2

Counts the number of rows that contain a non-blank value or an expression that evaluates to a non-blank value,

when evaluating an expression over a table.

An integer.

The COUNTX function takes two arguments. The first argument must always be a table, or any expression

that returns a table. The second argument is the column or expression that is searched by COUNTX.

The COUNTX function counts only values, dates, or strings. If the function finds no rows to count, it

returns a blank.

If you want to count logical values, use the COUNTAX function.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following formula returns a count of all rows in the Product table that have a list price.

The following formula illustrates how to pass a filtered table to COUNTX for the first argument. The formula

uses a filter expression to get only the rows in the Product table that meet the condition, ProductSubCategory =

"Caps", and then counts the rows in the resulting table that have a list price. The FILTER expression applies to the

table Products but uses a value that you look up in the related table, ProductSubCategory.

= COUNTX(FILTER(Product,RELATED(ProductSubcategory[EnglishProductSubcategoryName])="Caps"),
Product[ListPrice])

 See also
COUNT function

COUNTA function

COUNTAX function

Statistical functions

DISTINCTCOUNT
 10/26/2021 • 2 minutes to read

 Syntax

DISTINCTCOUNT(<column>)

 ParametersParameters

T ERMT ERM DESC RIP T IO NDESC RIP T IO N

column The column that contains the values to be counted

 Return value

 Remarks

 Example

= DISTINCTCOUNT(ResellerSales_USD[SalesOrderNumber])

RO W L A B EL SRO W L A B EL S A C C ESSO RIESA C C ESSO RIES B IKESB IKES C LOT H IN GC LOT H IN G
C O M P O N EN TC O M P O N EN T
SS --

GRA N DGRA N D
TOTA LTOTA L

2005 135 345 242 205 366

2006 356 850 644 702 1015

2007 531 1234 963 1138 1521

Counts the number of distinct values in a column.

The number of distinct values in column.

The only argument allowed to this function is a column. You can use columns containing any type of data.

When the function finds no rows to count, it returns a BLANK, otherwise it returns the count of distinct

values.

DISTINCTCOUNT function includes the BLANK value. To skip the BLANK value, use the

DISTINCTCOUNTNOBLANK function.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following example shows how to count the number of distinct sales orders in the column

ResellerSales_USD[SalesOrderNumber].

Using the above measure in a table with calendar year in the side and product category on top returns the

following results:

2008 293 724 561 601 894

1 1

Grand TotalGrand Total 13151315 31533153 24102410 26462646 11 37973797

RO W L A B EL SRO W L A B EL S A C C ESSO RIESA C C ESSO RIES B IKESB IKES C LOT H IN GC LOT H IN G
C O M P O N EN TC O M P O N EN T
SS --

GRA N DGRA N D
TOTA LTOTA L

 See also

In the above example, note that the rows Grand Total numbers do not add up, this happens because the same

order might contain line items, in the same order, from different product categories.

COUNT function

COUNTA function

COUNTAX function

COUNTX function

Statistical functions

DISTINCTCOUNTNOBLANK
 10/26/2021 • 2 minutes to read

 Syntax

DISTINCTCOUNTNOBLANK (<column>)

 ParametersParameters

T ERMT ERM DESC RIP T IO NDESC RIP T IO N

column The column that contains the values to be counted

 Return value

 Remarks

 Example

= DISTINCTCOUNT(ResellerSales_USD[SalesOrderNumber])

EVALUATE
 ROW(
 "DistinctCountNoBlank", DISTINCTCOUNTNOBLANK(DimProduct[EndDate]),
 "DistinctCount", DISTINCTCOUNT(DimProduct[EndDate])
)

[DIST IN C TC O UN T N O B L A N K][DIST IN C TC O UN T N O B L A N K] [DIST IN C TC O UN T][DIST IN C TC O UN T]

2 3

 See also

Counts the number of distinct values in a column.

The number of distinct values in column.

Unlike DISTINCTCOUNT function, DISTINCTCOUNTNOBLANK does not include the BLANK value.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following example shows how to count the number of distinct sales orders in the column

ResellerSales_USD[SalesOrderNumber].

DAX query

DISTINCTCOUNT

MAX
 10/26/2021 • 2 minutes to read

 Syntax

MAX(<column>)

MAX(<expression1>, <expression2>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

column The column in which you want to find the largest value.

expression Any DAX expression which returns a single value.

 Return value

 Remarks

 Example 1

= MAX(InternetSales[ExtendedAmount])

 Example 2

= Max([TotalSales], [TotalPurchases])

 See also

Returns the largest value in a column, or between two scalar expressions.

The largest value.

When comparing two expressions, blank is treated as 0 when comparing. That is, Max(1, Blank()) returns

1, and Max(-1, Blank()) returns 0. If both arguments are blank, MAX returns a blank. If either expression

returns a value which is not allowed, MAX returns an error.

TRUE/FALSE values are not supported. If you want to evaluate a column of TRUE/FALSE values, use the

MAXA function.

The following example returns the largest value found in the ExtendedAmount column of the InternetSales table.

The following example returns the largest value between the result of two expressions.

MAXA function

MAXX function

Statistical functions

MAXA
 10/26/2021 • 2 minutes to read

 Syntax

MAXA(<column>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

column The column in which you want to find the largest value.

 Return value

 Remarks

 Example 1

= MAXA([ResellerMargin])

 Example 2

Returns the largest value in a column.

The largest value.

The MAXA function takes as argument a column, and looks for the largest value among the following

types of values:

Numbers

Dates

Logical values, such as TRUE and FALSE. Rows that evaluate to TRUE count as 1; rows that evaluate to

FALSE count as 0 (zero).

Empty cells are ignored. If the column contains no values that can be used, MAXA returns 0 (zero).

If you want to compare text values, use the MAX function.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following example returns the greatest value from a calculated column, named ResellerMarginResellerMargin , that

computes the difference between list price and reseller price.

The following example returns the largest value from a column that contains dates and times. Therefore, this

formula gets the most recent transaction date.

= MAXA([TransactionDate])

 See also
MAX function

MAXX function

Statistical functions

MAXX
 10/26/2021 • 2 minutes to read

 Syntax

MAXX(<table>,<expression>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

table The table containing the rows for which the expression will
be evaluated.

expression The expression to be evaluated for each row of the table.

 Return value

 Remarks

 Example 1

= MAXX(InternetSales, InternetSales[TaxAmt]+ InternetSales[Freight])

 Example 2

Evaluates an expression for each row of a table and returns the largest value.

The largest value.

The tabletable argument to the MAXX function can be a table name, or an expression that evaluates to a table.

The second argument indicates the expression to be evaluated for each row of the table.

Of the values to evaluate, only the following are counted:

Numbers

Texts

Dates

Blank values are skipped. TRUE/FALSE values are not supported.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following formula uses an expression as the second argument to calculate the total amount of taxes and

shipping for each order in the table, InternetSales. The expected result is 375.7184.

The following formula first filters the table InternetSales, by using a FILTER expression, to return a subset of

orders for a specific sales region, defined as [SalesTerritory] = 5. The MAXX function then evaluates the

expression used as the second argument for each row of the filtered table, and returns the highest amount for

= MAXX(FILTER(InternetSales,[SalesTerritoryCode]="5"), InternetSales[TaxAmt]+ InternetSales[Freight])

 See also

taxes and shipping for just those orders. The expected result is 250.3724.

MAX function

MAXA function

Statistical functions

MIN
 10/26/2021 • 2 minutes to read

 Syntax

MIN(<column>)

MIN(<expression1>, <expression2>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

column The column in which you want to find the smallest value.

expression Any DAX expression which returns a single value.

 Return value

 Remarks

 Example 1

= MIN([ResellerMargin])

 Example 2

Returns the smallest value in a column, or between two scalar expressions.

The smallest value.

The MIN function takes a column or two expressions as an argument, and returns the smallest value. The

following types of values in the columns are counted:

Numbers

Texts

Dates

Blanks

When comparing expressions, blank is treated as 0 when comparing. That is, Min(1,Blank()) returns 0,

and Min(-1, Blank()) returns -1. If both arguments are blank, MIN returns a blank. If either expression

returns a value which is not allowed, MIN returns an error.

TRUE/FALSE values are not supported. If you want to evaluate a column of TRUE/FALSE values, use the

MINA function.

The following example returns the smallest value from the calculated column, ResellerMargin.

= MIN([TransactionDate])

 Example 3

= Min([TotalSales], [TotalPurchases])

 See also

The following example returns the smallest value from a column that contains dates and times, TransactionDate.

This formula therefore returns the date that is earliest.

The following example returns the smallest value from the result of two scalar expressions.

MINA function

MINX function

Statistical functions

MINA
 10/26/2021 • 2 minutes to read

 Syntax

MINA(<column>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

column The column for which you want to find the minimum value.

 Return value

 Remarks

 Example 1

= MINA(InternetSales[Freight])

 Example 2

= MINA([PostalCode])

 See also

Returns the smallest value in a column.

The smallest value.

The MINA function takes as argument a column that contains numbers, and determines the smallest

value as follows:

If the column contains no values, MINA returns 0 (zero).

Rows in the column that evaluates to logical values, such as TRUE and FALSE are treated as 1 if TRUE

and 0 (zero) if FALSE.

Empty cells are ignored.

If you want to compare text values, use the MIN function.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following expression returns the minimum freight charge from the table, InternetSales.

The following expression returns the minimum value in the column, PostalCode. Because the data type of the

column is text, the function does not find any values, and the formula returns zero (0).

MIN function

MINX function

Statistical functions

MINX
 10/26/2021 • 2 minutes to read

 Syntax

MINX(<table>, < expression>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

table The table containing the rows for which the expression will
be evaluated.

expression The expression to be evaluated for each row of the table.

 Return value

 Remarks

 Example 1

= MINX(FILTER(InternetSales, [SalesTerritoryKey] = 5),[Freight])

 Example 2

= MINX(FILTER(InternetSales, InternetSales[SalesTerritoryKey] = 5), InternetSales[Freight] +
InternetSales[TaxAmt])

Returns the smallest value that results from evaluating an expression for each row of a table.

A smallest value.

The MINX function takes as its first argument a table, or an expression that returns a table. The second

argument contains the expression that is evaluated for each row of the table.

Blank values are skipped. TRUE/FALSE values are not supported.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following example filters the table, InternetSales, and returns only rows for a specific sales territory. The

formula then finds the minimum value in the column, Freight.

The following example uses the same filtered table as in the previous example, but instead of merely looking up

values in the column for each row of the filtered table, the function calculates the sum of two columns, Freight

and TaxAmt, and returns the smallest value resulting from that calculation.

 See also

In the first example, the names of the columns are unqualified. In the second example, the column names are

fully qualified.

MIN function

MINA function

Statistical functions

PRODUCT
 10/26/2021 • 2 minutes to read

 Syntax

PRODUCT(<column>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

column The column that contains the numbers for which the
product is to be computed.

 Return value

 Remarks

 Example

= PRODUCT(Annuity[AdjustedRates])

 See also

Returns the product of the numbers in a column.

A decimal number.

To return the product of an expression evaluated for each row in a table, use PRODUCTX function.

Only the numbers in the column are counted. Blanks, logical values, and text are ignored. For example,

PRODUCT(Table[Column]) is equivalent to PRODUCTX(Table, Table[Column]) .

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following computes the product of the AdjustedRates column in an Annuity table:

PRODUCTX

PRODUCTX
 10/26/2021 • 2 minutes to read

 Syntax

PRODUCTX(<table>, <expression>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

table The table containing the rows for which the expression will
be evaluated.

expression The expression to be evaluated for each row of the table.

 Return value

 Remarks

 Example

= [PresentValue] * PRODUCTX(AnnuityPeriods, 1+[FixedInterestRate])

 See also

Returns the product of an expression evaluated for each row in a table.

A decimal number.

To return the product of the numbers in a column, use PRODUCT.

The PRODUCTX function takes as its first argument a table, or an expression that returns a table. The

second argument is a column that contains the numbers for which you want to compute the product, or

an expression that evaluates to a column.

Only the numbers in the column are counted. Blanks, logical values, and text are ignored.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following computes the future value of an investment:

PRODUCT

SUM
 10/26/2021 • 2 minutes to read

 Syntax

SUM(<column>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

column The column that contains the numbers to sum.

 Return value

 Remarks

 Example

= SUM(Sales[Amt])

 See also

Adds all the numbers in a column.

A decimal number.

If you want to filter the values that you are summing, you can use the SUMX function and specify an expression

to sum over.

The following example adds all the numbers that are contained in the column, Amt, from the table, Sales.

SUMX

SUMX
 10/26/2021 • 2 minutes to read

 Syntax

SUMX(<table>, <expression>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

table The table containing the rows for which the expression will
be evaluated.

expression The expression to be evaluated for each row of the table.

 Return value

 Remarks

 Example

= SUMX(FILTER(InternetSales, InternetSales[SalesTerritoryID]=5),[Freight])

 See also

Returns the sum of an expression evaluated for each row in a table.

A decimal number.

The SUMX function takes as its first argument a table, or an expression that returns a table. The second

argument is a column that contains the numbers you want to sum, or an expression that evaluates to a

column.

Only the numbers in the column are counted. Blanks, logical values, and text are ignored.

For more complex examples of SUMX in formulas, see ALL and CALCULATETABLE.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following example first filters the table, InternetSales, on the expression, ShippingTerritoryID = 5 , and then

returns the sum of all values in the column, Freight. In other words, the expression returns the sum of freight

charges for only the specified sales area.

If you do not need to filter the column, use the SUM function. The SUM function is similar to the Excel function

of the same name, except that it takes a column as a reference.

SUM

Statistical functions

Date and time functions
 10/26/2021 • 2 minutes to read

 In this category

F UN C T IO NF UN C T IO N DESC RIP T IO NDESC RIP T IO N

CALENDAR Returns a table with a single column named "Date" that
contains a contiguous set of dates.

CALENDARAUTO Returns a table with a single column named "Date" that
contains a contiguous set of dates.

DATE Returns the specified date in datetime format.

DATEDIFF Returns the count of interval boundaries crossed between
two dates.

DATEVALUE Converts a date in the form of text to a date in datetime
format.

DAY Returns the day of the month, a number from 1 to 31.

EDATE Returns the date that is the indicated number of months
before or after the start date.

EOMONTH Returns the date in datetime format of the last day of the
month, before or after a specified number of months.

HOUR Returns the hour as a number from 0 (12:00 A.M.) to 23
(11:00 P.M.).

MINUTE Returns the minute as a number from 0 to 59, given a date
and time value.

MONTH Returns the month as a number from 1 (January) to 12
(December).

NOW Returns the current date and time in datetime format.

QUARTER Returns the quarter as a number from 1 to 4.

SECOND Returns the seconds of a time value, as a number from 0 to
59.

TIME Converts hours, minutes, and seconds given as numbers to
a time in datetime format.

These functions help you create calculations based on dates and time. Many of the functions in DAX are similar

to the Excel date and time functions. However, DAX functions use a datetimedatetime data type, and can take values

from a column as an argument.

TIMEVALUE Converts a time in text format to a time in datetime format.

TODAY Returns the current date.

UTCNOW Returns the current UTC date and time

UTCTODAY Returns the current UTC date.

WEEKDAY Returns a number from 1 to 7 identifying the day of the
week of a date.

WEEKNUM Returns the week number for the given date and year
according to the return_type value.

YEAR Returns the year of a date as a four digit integer in the range
1900-9999.

YEARFRAC Calculates the fraction of the year represented by the
number of whole days between two dates.

F UN C T IO NF UN C T IO N DESC RIP T IO NDESC RIP T IO N

CALENDAR
 10/26/2021 • 2 minutes to read

 Syntax

CALENDAR(<start_date>, <end_date>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

start_date Any DAX expression that returns a datetime value.

end_date Any DAX expression that returns a datetime value.

 Return value

 Remarks

 Examples

= CALENDAR (DATE (2005, 1, 1), DATE (2015, 12, 31))

= CALENDAR (MINX (Sales, [Date]), MAXX (Forecast, [Date]))

Returns a table with a single column named "Date" that contains a contiguous set of dates. The range of dates is

from the specified start date to the specified end date, inclusive of those two dates.

Returns a table with a single column named "Date" containing a contiguous set of dates. The range of dates is

from the specified start date to the specified end date, inclusive of those two dates.

An error is returned if start_date is greater than end_date.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following formula returns a table with dates between January 1st, 2005 and December 31st, 2015.

For a data model which includes actual sales data and future sales forecasts. The following expression returns

the date table covering the range of dates in these two tables.

CALENDARAUTO
 10/26/2021 • 2 minutes to read

 Syntax

CALENDARAUTO([fiscal_year_end_month])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

fiscal_year_end_month Any DAX expression that returns an integer from 1 to 12. If
omitted, defaults to the value specified in the calendar table
template for the current user, if present; otherwise, defaults
to 12.

 Return value

 Remarks

 Example

Returns a table with a single column named "Date" that contains a contiguous set of dates. The range of dates is

calculated automatically based on data in the model.

Returns a table with a single column named "Date" that contains a contiguous set of dates. The range of dates is

calculated automatically based on data in the model.

The date range is calculated as follows:

The earliest date in the model which is not in a calculated column or calculated table is taken as the

MinDate.

The latest date in the model which is not in a calculated column or calculated table is taken as the

MaxDate.

The date range returned is dates between the beginning of the fiscal year associated with MinDate and

the end of the fiscal year associated with MaxDate.

An error is returned if the model does not contain any datetime values which are not in calculated

columns or calculated tables.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

In this example, the MinDate and MaxDate in the data model are July 1, 2010 and June 30, 2011.

CALENDARAUTO() will return all dates between January 1, 2010 and December 31, 2011.

CALENDARAUTO(3) will return all dates between March 1, 2010 and March 31, 2012.

DATE
 10/26/2021 • 3 minutes to read

 Syntax

DATE(<year>, <month>, <day>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

year A number representing the year.

The value of the yearyear argument can include one to four
digits. The yearyear argument is interpreted according to the
date system used by your computer.

Dates beginning with March 1, 1900 are supported.

If you enter a number that has decimal places, the number is
rounded.

For values greater than 9999 or less than zero (negative
values), the function returns a #VALUE!#VALUE! error.

If the yearyear value is between 0 and 1899, the value is added
to 1900 to produce the final value. See the examples below.
Note:Note: You should use four digits for the yearyear argument
whenever possible to prevent unwanted results. For
example, using 07 returns 1907 as the year value.

month A number representing the month or a calculation according
to the following rules:

Negative integers are not supported. Valid values are 1-12.

If monthmonth is a number from 1 to 12, then it represents a
month of the year. 1 represents January, 2 represents
February, and so on until 12 that represents December.

If you enter an integer larger than 12, the following
computation occurs: the date is calculated by adding the
value of monthmonth to the yearyear . For example, if you have DATE(
2008, 18, 1), the function returns a datetime value
equivalent to June 1st of 2009, because 18 months are
added to the beginning of 2008 yielding a value of June
2009. See examples below.

Returns the specified date in datetimedatetime format.

day A number representing the day or a calculation according to
the following rules:

Negative integers are not supported. Valid values are 1-31.

If dayday is a number from 1 to the last day of the given month
then it represents a day of the month.

If you enter an integer larger than last day of the given
month, the following computation occurs: the date is
calculated by adding the value of dayday to monthmonth. For
example, in the formula DATE(2008, 3, 32) , the DATE

function returns a datetimedatetime value equivalent to April 1st of
2008, because 32 days are added to the beginning of March
yielding a value of April 1st.

If dayday contains a decimal portion, it is rounded to the
nearest integer value.

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

 Return value

 Remarks

 Examples
 Simple DateSimple Date

= DATE(2009,7,8)

 Years before 1899Years before 1899

Returns the specified date (datetime)datetime) .

The DATE function takes the integers that are input as arguments, and generates the corresponding date.

The DATE function is most useful in situations where the year, month, and day are supplied by formulas.

For example, the underlying data might contain dates in a format that is not recognized as a date, such as

YYYYMMDD. You can use the DATE function in conjunction with other functions to convert the dates to a

number that can be recognized as a date.

In contrast to Microsoft Excel, which stores dates as a serial number, DAX date functions always return a

datetimedatetime data type. However, you can use formatting to display dates as serial numbers if you want.

Date and datetime can also be specified as a literal in the format dt"YYYY-MM-DD" ,

dt"YYYY-MM-DDThh:mm:ss" , or dt"YYYY-MM-DD hh:mm:ss" . When specified as a literal, using the DATE

function in the expression is not necessary. To learn more, see DAX Syntax | Date and time.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following formula returns the date July 8, 2009:

If the value that you enter for the yearyear argument is between 0 (zero) and 1899 (inclusive), that value is added to

1900 to calculate the year. The following formula returns January 2, 1908: (1900+08).

= DATE(08,1,2)

 Years after 1899Years after 1899

= DATE(2008,1,2)

 MonthsMonths

= DATE(2008,14,2)

 DaysDays

= DATE(2008,1,35)

 See also

If yearyear is between 1900 and 9999 (inclusive), that value is used as the year. The following formula returns

January 2, 2008:

If monthmonth is greater than 12, monthmonth adds that number of months to the first month in the year specified. The

following formula returns the date February 2, 2009:

If dayday is greater than the number of days in the month specified, dayday adds that number of days to the first day

in the month. The following formula returns the date February 4, 2008:

Date and time functions

DAY function

TODAY function

DATEDIFF
 10/26/2021 • 2 minutes to read

 Syntax

DATEDIFF(<start_date>, <end_date>, <interval>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

start_date A scalar datetime value.

end_date A scalar datetime value Return value.

interval The interval to use when comparing dates. The value can be
one of the following:

- SECOND
- MINUTE
- HOUR
- DAY
- WEEK
- MONTH
- QUARTER
- YEAR

 Return value

 Remarks

 Example

DAT EDAT E

2012-12-31 23:59:59

2013-01-01 00:00:00

Returns the count of interval boundaries crossed between two dates.

The count of interval boundaries crossed between two dates.

An error is returned if start_date is larger than end_date.

The following all return 1:

DATEDIFF(MIN(Calendar[Date]), MAX(Calendar[Date]), SECOND)

DATEDIFF(MIN(Calendar[Date]), MAX(Calendar[Date]), MINUTE)

DATEDIFF(MIN(Calendar[Date]), MAX(Calendar[Date]), HOUR)

DATEDIFF(MIN(Calendar[Date]), MAX(Calendar[Date]), DAY)

DATEDIFF(MIN(Calendar[Date]), MAX(Calendar[Date]), WEEK)

DATEDIFF(MIN(Calendar[Date]), MAX(Calendar[Date]), MONTH)

DATEDIFF(MIN(Calendar[Date]), MAX(Calendar[Date]), QUARTER)

DATEDIFF(MIN(Calendar[Date]), MAX(Calendar[Date]), YEAR)

DATEVALUE
 10/26/2021 • 2 minutes to read

 Syntax

DATEVALUE(date_text)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

date_text Text that represents a date.

 Property Value/Return value

 Remarks

 Example

Converts a date in text format to a date in datetime format.

A date in datetimedatetime format.

When converting, DATEVALUE uses the locale and date/time settings of the model to determine a date

value. If the model date/time settings represent dates in the format of Month/Day/Year, then the string,

"1/8/2009", is converted to a datetimedatetime value equivalent to January 8th of 2009. However, if the model

date/time settings represent dates in the format of Day/Month/Year, the same string is converted as a

datetimedatetime value equivalent to August 1st of 2009.

If conversion using the locale and date/time settings of the model fails, DATEVALUE will attempt to use

other date formats. In this case, some rows may be converted using one format and other rows are

converted using a different format. For example, "5/4/2018" may convert to May 4th of 2018, and

"20/4/2018" may convert to April 20th.

If the year portion of the date_textdate_text argument is omitted, the DATEVALUE function uses the current year

from your computer's built-in clock. Time information in the date_textdate_text argument is ignored.

Model locale and data/time settings are initially determined by the application and computer when the

model is created.

Date and datetime can also be specified as a literal in the format dt"YYYY-MM-DD" ,

dt"YYYY-MM-DDThh:mm:ss" , or dt"YYYY-MM-DD hh:mm:ss" . When specified as a literal, using the DATEVALUE

function in the expression is not necessary. To learn more, see DAX Syntax | Date and time.

The following example returns a different datetimedatetime value depending on the model locale and settings for how

dates and times are presented.

In date/time settings where the day precedes the month, the example returns a datetimedatetime value

corresponding to January 8th of 2009.

In date/time settings where the month precedes the day, the example returns a datetimedatetime value

= DATEVALUE("8/1/2009")

 See also

corresponding to August 1st of 2009.

Date and time functions

DAY
 10/26/2021 • 2 minutes to read

 Syntax

DAY(<date>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

date A date in datetimedatetime format, or a text representation of a
date.

 Return value

 Remarks

 Example: Getting the day from a date column

= DAY([Birthdate])

 Example - Getting the day from a string date

Returns the day of the month, a number from 1 to 31.

An integer number indicating the day of the month.

The DAY function takes as an argument the date of the day you are trying to find. Dates can be provided

to the function by using another date function, by using an expression that returns a date, or by typing a

date in a datetimedatetime format. You can also type a date in one of the accepted string formats for dates.

Values returned by the YEAR, MONTH and DAY functions will be Gregorian values regardless of the

display format for the supplied date value. For example, if the display format of the supplied date is Hijri,

the returned values for the YEAR, MONTH and DAY functions will be values associated with the equivalent

Gregorian date.

When the date argument is a text representation of the date, the day function uses the locale and

date/time settings of the client computer to understand the text value in order to perform the conversion.

If the current date/time settings represent dates in the format of Month/Day/Year, then the string,

"1/8/2009", is interpreted as a datetimedatetime value equivalent to January 8th of 2009, and the function

returns 8. However, if the current date/time settings represent dates in the format of Day/Month/Year, the

same string would be interpreted as a datetimedatetime value equivalent to August 1st of 2009, and the function

returns 1.

The following formula returns the day from the date in the column, [Birthdate].

The following formulas return the day, 4, using dates that have been supplied as strings in an accepted text

format.

= DAY("3-4-1007")
= DAY("March 4 2007")

 Example - Using a day value as a condition

= IF(DAY([SalesDate])=10,"promotion","")

 See also

The following expression returns the day that each sales order was placed, and flags the row as a promotional

sale item if the order was placed on the 10th of the month.

Date and time functions

TODAY function

DATE function

EDATE
 10/26/2021 • 2 minutes to read

 Syntax

EDATE(<start_date>, <months>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

start_date A date in datetimedatetime or texttext format that represents the start
date.

months An integer that represents the number of months before or
after star t_datestar t_date.

 Return value

 Remarks

 Example

Returns the date that is the indicated number of months before or after the start date. Use EDATE to calculate

maturity dates or due dates that fall on the same day of the month as the date of issue.

A date (datetimedatetime).

In contrast to Microsoft Excel, which stores dates as sequential serial numbers, DAX works with dates in a

datetimedatetime format. Dates stored in other formats are converted implicitly.

If star t_datestar t_date is not a valid date, EDATE returns an error. Make sure that the column reference or date that

you supply as the first argument is a date.

If monthsmonths is not an integer, it is truncated.

When the date argument is a text representation of the date, the EDATE function uses the locale and date

time settings of the client computer to understand the text value in order to perform the conversion. If the

current date time settings represent a date in the format of Month/Day/Year, then the following string

"1/8/2009" is interpreted as a datetime value equivalent to January 8th of 2009. However, if the current

date time settings represent a date in the format of Day/Month/Year, the same string would be

interpreted as a datetime value equivalent to August 1st of 2009.

If the requested date is past the last day of the corresponding month, then the last day of the month is

returned. For example, the following functions: EDATE("2009-01-29", 1), EDATE("2009-01-30", 1),

EDATE("2009-01-31", 1) return February 28th of 2009; that corresponds to one month after the start

date.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

= EDATE([TransactionDate],3)

 See also

The following example returns the date three months after the order date, which is stored in the column

[TransactionDate].

EOMONTH function

Date and time functions

EOMONTH
 10/26/2021 • 2 minutes to read

 Syntax

EOMONTH(<start_date>, <months>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

start_date The start date in datetimedatetime format, or in an accepted text
representation of a date.

months A number representing the number of months before or
after the star t_datestar t_date. Note:Note: If you enter a number that is
not an integer, the number is rounded up or down to the
nearest integer.

 Return value

 Remarks

Returns the date in datetimedatetime format of the last day of the month, before or after a specified number of months.

Use EOMONTH to calculate maturity dates or due dates that fall on the last day of the month.

A date (datetimedatetime).

In contrast to Microsoft Excel, which stores dates as sequential serial numbers, DAX works with dates in a

datetimedatetime format. The EOMONTH function can accept dates in other formats, with the following

restrictions:

If star t_datestar t_date is not a valid date, EOMONTH returns an error.

If star t_datestar t_date is a numeric value that is not in a datetimedatetime format, EOMONTH will convert the number to

a date. To avoid unexpected results, convert the number to a datetimedatetime format before using the

EOMONTH function.

If star t_datestar t_date plus months yields an invalid date, EOMONTH returns an error. Dates before March 1st of

1900 and after December 31st of 9999 are invalid.

When the date argument is a text representation of the date, the EDATE function uses the locale and date

time settings, of the client computer, to understand the text value in order to perform the conversion. If

current date time settings represent a date in the format of Month/Day/Year, then the following string

"1/8/2009" is interpreted as a datetime value equivalent to January 8th of 2009. However, if the current

date time settings represent a date in the format of Day/Month/Year, the same string would be

interpreted as a datetime value equivalent to August 1st of 2009.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

Example

= EOMONTH("March 3, 2008",1.5)

 See also

The following expression returns May 31, 2008, because the monthsmonths argument is rounded to 2.

EDATE function

Date and time functions

HOUR
 10/26/2021 • 2 minutes to read

 Syntax

HOUR(<datetime>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

datetime A datetimedatetime value, such as 16:48:00 or 4:48 PM.

 Return value

 Remarks

 Example 1

= HOUR('Orders'[TransactionTime])

 Example 2

= HOUR("March 3, 2008 3:00 PM")

 See also

Returns the hour as a number from 0 (12:00 A.M.) to 23 (11:00 P.M.).

An integer number from 0 to 23.

The HOUR function takes as argument the time that contains the hour you want to find. You can supply

the time by using a date/time function, an expression that returns a datetimedatetime, or by typing the value

directly in one of the accepted time formats. Times can also be entered as any accepted text

representation of a time.

When the datetimedatetime argument is a text representation of the date and time, the function uses the locale

and date/time settings of the client computer to understand the text value in order to perform the

conversion. Most locales use the colon (:) as the time separator and any input text using colons as time

separators will parse correctly. Review your locale settings to understand your results.

The following example returns the hour from the TransactionTimeTransactionTime column of a table named OrdersOrders .

The following example returns 15, meaning the hour corresponding to 3 PM in a 24-hour clock. The text value is

automatically parsed and converted to a date/time value.

Date and time functions

MINUTE function

YEAR function

SECOND function

MINUTE
 10/26/2021 • 2 minutes to read

 Syntax

MINUTE(<datetime>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

datetime A datetimedatetime value or text in an accepted time format, such
as 16:48:00 or 4:48 PM.

 Return value

 Remarks

 Example 1

= MINUTE(Orders[TransactionTime])

 Example 2

= MINUTE("March 23, 2008 1:45 PM")

 See also

Returns the minute as a number from 0 to 59, given a date and time value.

An integer number from 0 to 59.

In contrast to Microsoft Excel, which stores dates and times in a serial numeric format, DAX uses a

datetimedatetime data type for dates and times. You can provide the datetimedatetime value to the MINUTE function by

referencing a column that stores dates and times, by using a date/time function, or by using an

expression that returns a date and time.

When the datetimedatetime argument is a text representation of the date and time, the function uses the locale

and date/time settings of the client computer to understand the text value in order to perform the

conversion. Most locales use the colon (:) as the time separator and any input text using colons as time

separators will parse correctly. Verify your locale settings to understand your results.

The following example returns the minute from the value stored in the TransactionTimeTransactionTime column of the OrdersOrders

table.

The following example returns 45, which is the number of minutes in the time 1:45 PM.

Date and time functions

HOUR function

YEAR function

SECOND function

MONTH
 10/26/2021 • 2 minutes to read

 Syntax

MONTH(<datetime>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

date A date in datetimedatetime or text format.

 Return value

 Remarks

 Example 1

= MONTH("March 3, 2008 3:45 PM")

Returns the month as a number from 1 (January) to 12 (December).

An integer number from 1 to 12.

In contrast to Microsoft Excel, which stores dates as serial numbers, DAX uses a datetimedatetime format when

working with dates. You can enter the date used as argument to the MONTH function by typing an

accepted datetimedatetime format, by providing a reference to a column that contains dates, or by using an

expression that returns a date.

Values returned by the YEAR, MONTH and DAY functions will be Gregorian values regardless of the

display format for the supplied date value. For example, if the display format of the supplied date is Hijri,

the returned values for the YEAR, MONTH and DAY functions will be values associated with the equivalent

Gregorian date.

When the date argument is a text representation of the date, the function uses the locale and date time

settings of the client computer to understand the text value in order to perform the conversion. If the

current date time settings represent a date in the format of Month/Day/Year, then the following string

"1/8/2009" is interpreted as a datetime value equivalent to January 8th of 2009, and the function yields a

result of 1. However, if the current date time settings represent a date in the format of Day/Month/Year,

then the same string would be interpreted as a datetime value equivalent to August 1st of 2009, and the

function yields a result of 8.

If the text representation of the date cannot be correctly converted to a datetime value, the function

returns an error.

The following expression returns 3, which is the integer corresponding to March, the month in the datedate

argument.

 Example 2

= MONTH(Orders[TransactionDate])

 See also

The following expression returns the month from the date in the TransactionDateTransactionDate column of the OrdersOrders table.

Date and time functions

HOUR function

MINUTE function

YEAR function

SECOND function

NOW
 10/26/2021 • 2 minutes to read

 Syntax

NOW()

 Return value

 Remarks

 Example

= NOW()+3.5

 See also

Returns the current date and time in datetimedatetime format.

The NOW function is useful when you need to display the current date and time on a worksheet or calculate a

value based on the current date and time, and have that value updated each time you open the worksheet.

A date (datetime)datetime) .

The result of the NOW function changes only when the column that contains the formula is refreshed. It

is not updated continuously.

In the Power BI Service, the result of the NOW function is always in the UTC timezone.

The TODAY function returns the same date but is not precise with regard to time; the time returned is

always 12:00:00 AM and only the date is updated.

The following example returns the current date and time plus 3.5 days:

UTCNOW function

TODAY function

QUARTER
 10/26/2021 • 2 minutes to read

 Syntax

QUARTER(<date>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

date A date.

 Return value

 Remarks

 Example 1

EVALUATE { QUARTER(DATE(2019, 2, 1)), QUARTER(DATE(2018, 12, 31)) }

[VA L UE][VA L UE]

1

4

 Example 2

Returns the quarter as a number from 1 (January – March) to 4 (October – December).

An integer number from 1 to 4.

If the input value is BLANK, the output value is also BLANK.

The following DAX query:

Returns:

The following DAX query:

EVALUATE
ADDCOLUMNS(
 FILTER(
 VALUES(
 FactInternetSales[OrderDate]),
 [OrderDate] >= DATE(2008, 3, 31) && [OrderDate] <= DATE(2008, 4, 1)
),
 "Quarter", QUARTER([OrderDate])
)

FA C T IN T ERN ET SA L ES[O RDERDAT E]FA C T IN T ERN ET SA L ES[O RDERDAT E] [Q UA RT ER][Q UA RT ER]

3/31/2008 1

4/1/2008 2

 See also

Returns:

YEAR

MONTH

DAY

SECOND
 10/26/2021 • 2 minutes to read

 Syntax

SECOND(<time>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

time A time in datetimedatetime format, such as 16:48:23 or 4:48:47 PM.

 Return value

 Remarks

 Example 1

= SECOND('Orders'[TransactionTime])

Returns the seconds of a time value, as a number from 0 to 59.

An integer number from 0 to 59.

In contrast to Microsoft Excel, which stores dates and times as serial numbers, DAX uses a datetimedatetime

format when working with dates and times. If the source data is not in this format, DAX implicitly

converts the data. You can use formatting to display the dates and times as a serial number of you need

to.

The date/time value that you supply as an argument to the SECOND function can be entered as a text

string within quotation marks (for example, "6:45 PM"). You can also provide a time value as the result of

another expression, or as a reference to a column that contains times.

If you provide a numeric value of another data type, such as 13.60, the value is interpreted as a serial

number and is represented as a datetimedatetime data type before extracting the value for seconds. To make it

easier to understand your results, you might want to represent such numbers as dates before using them

in the SECOND function. For example, if you use SECOND with a column that contains a numeric value

such as, 25.5625.56 , the formula returns 24. That is because, when formatted as a date, the value 25.56 is

equivalent to January 25, 1900, 1:26:24 PM.

When the timetime argument is a text representation of a date and time, the function uses the locale and

date/time settings of the client computer to understand the text value in order to perform the conversion.

Most locales use the colon (:) as the time separator and any input text using colons as time separators will

parse correctly. Review your locale settings to understand your results.

The following formula returns the number of seconds in the time contained in the TransactionTimeTransactionTime column of

a table named OrdersOrders .

 Example 2

= SECOND("March 3, 2008 12:00:03")

 See also

The following formula returns 3, which is the number of seconds in the time represented by the value, March 3,March 3,

2008 12:00:032008 12:00:03 .

Date and time functions

HOUR

MINUTE

YEAR

TIME
 10/26/2021 • 2 minutes to read

 Syntax

TIME(hour, minute, second)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

hour Impor t mode:Impor t mode: A number from 0 to 32767 representing
the hour.
Any value greater than 23 will be divided by 24 and the
remainder will be treated as the hour value, represented as a
fraction of a day.
For example, TIME(27,0,0) = TIME(3,0,0) = 3:00:00 AM

DirectQuer y mode:DirectQuer y mode: A number from 0 to 23 representing
the hour.

minute Impor t mode:Impor t mode: A number from 0 to 32767 representing
the minute.
Any value greater than 59 minutes will be converted to
hours and minutes.
Any value greater than 1440 (24 hours) does not alter the
date portion - instead, it will be divided by 1440 and the
remainder will be treated as the minute value, represented
as a fraction of a day.
For example, TIME(0,2190,0) = TIME(0,750,0) =
TIME(12,30,0) = 12:30:00 PM

DirectQuer y mode:DirectQuer y mode: A number from 0 to 59 representing
the minute.

second Impor t mode:Impor t mode: A number from 0 to 32767 representing
the second.
Any value greater than 59 will be converted to hours,
minutes, and seconds.
For example, TIME(0,0,2000) = TIME(0,33,20) = 12:33:20
AM

DirectQuer y mode:DirectQuer y mode: A number from 0 to 59 representing
the second.

 Return value

 Remarks

Converts hours, minutes, and seconds given as numbers to a time in datetimedatetime format.

A time (datetimedatetime) ranging from 00:00:00 (12:00:00 AM) to 23:59:59 (11:59:59 PM).

In contrast to Microsoft Excel, which stores dates and times as serial numbers, DAX works with date and

 Example 1

= TIME(27,0,0)

= TIME(3,0,0)

 Example 2

= TIME(0,750,0)

= TIME(12,30,0)

 Example 3

= TIME([intHours],[intMinutes],[intSeconds])

 See also

time values in a datetimedatetime format. Numbers in other formats are implicitly converted when you use a

date/time value in a DAX function. If you need to use serial numbers, you can use formatting to change

the way that the numbers are displayed.

Time values are a portion of a date value, and in the serial number system are represented by a decimal

number. Therefore, the datetimedatetime value 12:00 PM is equivalent to 0.5, because it is half of a day.

You can supply the arguments to the TIME function as values that you type directly, as the result of

another expression, or by a reference to a column that contains a numeric value.

Date and datetime can also be specified as a literal in the format dt"YYYY-MM-DD" ,

dt"YYYY-MM-DDThh:mm:ss" , or dt"YYYY-MM-DD hh:mm:ss" . When specified as a literal, using the TIME

function in the expression is not necessary. To learn more, see DAX Syntax | Date and time.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following examples both return the time, 3:00 AM:

The following examples both return the time, 12:30 PM:

The following example creates a time based on the values in the columns, intHours , intMinutes , intSeconds :

DATE

Date and time functions

TIMEVALUE
 10/26/2021 • 2 minutes to read

 Syntax

TIMEVALUE(time_text)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

time_text A text string that that represents a certain time of the day.
Any date information included in the time_texttime_text argument is
ignored.

 Return value

 Remarks

 Example

= TIMEVALUE("20:45:30")

 See also

Converts a time in text format to a time in datetime format.

A date (datetimedatetime).

Time values are a portion of a date value and represented by a decimal number. For example, 12:00 PM is

represented as 0.5 because it is half of a day.

When the time_texttime_text argument is a text representation of the date and time, the function uses the locale

and date/time settings of the model to understand the text value in order to perform the conversion.

Most locales use the colon (:) as the time separator, and any input text using colons as time separators will

parse correctly. Review your locale settings to understand your results.

Date and datetime can also be specified as a literal in the format dt"YYYY-MM-DD" ,

dt"YYYY-MM-DDThh:mm:ss" , or dt"YYYY-MM-DD hh:mm:ss" . When specified as a literal, using the TIMEVALUE

function in the expression is not necessary. To learn more, see DAX Syntax | Date and time.

Date and time functions

TODAY
 10/26/2021 • 2 minutes to read

 Syntax

TODAY()

 Return value

 Remarks

 Example

= YEAR(TODAY())-1963

 See also

Returns the current date.

A date (datetimedatetime).

The TODAY function is useful when you need to have the current date displayed on a worksheet,

regardless of when you open the workbook. It is also useful for calculating intervals.

If the TODAY function does not update the date when you expect it to, you might need to change the

settings that control when the column or workbook is refreshed..

The NOW function is similar but returns the exact time, whereas TODAY returns the time value 12:00:00

PM for all dates.

If you know that someone was born in 1963, you might use the following formula to find that person's age as of

this year's birthday:

This formula uses the TODAY function as an argument for the YEAR function to obtain the current year, and then

subtracts 1963, returning the person's age.

Date and time functions

NOW

UTCNOW
 10/26/2021 • 2 minutes to read

 Syntax

UTCNOW()

 Return value

 Remarks

 Example

EVALUATE { FORMAT(UTCNOW(), "General Date") }

[VA L UE][VA L UE]

2/2/2018 4:48:08 AM

 See also

Returns the current UTC date and time.

A (datetime)datetime) .

The result of the UTCNOW function changes only when the formula is refreshed. It is not continuously updated.

The following:

Returns:

NOW function

UTCTODAY function

UTCTODAY
 10/26/2021 • 2 minutes to read

 Syntax

UTCTODAY()

 Return value

 Remarks

 Example

EVALUATE { FORMAT(UTCTODAY(), "General Date") }

[VA L UE][VA L UE]

2/2/2018

 See also

Returns the current UTC date.

A date.

UTCTODAY returns the time value 12:00:00 PM for all dates.

The UTCNOW function is similar but returns the exact time and date.

The following:

Returns:

NOW function

UTCNOW function

WEEKDAY
 10/26/2021 • 2 minutes to read

 Syntax

WEEKDAY(<date>, <return_type>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

date A date in datetimedatetime format.

Dates should be entered by using the DATE function, by
using expressions that result in a date, or as the result of
other formulas.

return_type A number that determines the Return value:

Return type: 11 , week begins on Sunday (1) and ends on
Saturday (7). numbered 1 through 7.

Return type: 22 , week begins on Monday (1) and ends on
Sunday (7).

Return type: 33 , week begins on Monday (0) and ends on
Sunday (6).numbered 1 through 7.

 Return value

 Remarks

Returns a number from 1 to 7 identifying the day of the week of a date. By default the day ranges from 1

(Sunday) to 7 (Saturday).

An integer number from 1 to 7.

In contrast to Microsoft Excel, which stores dates as serial numbers, DAX works with dates and times in a

datetimedatetime format. If you need to display dates as serial numbers, you can use the formatting options in

Excel.

You can also type dates in an accepted text representation of a date, but to avoid unexpected results, it is

best to convert the text date to a datetimedatetime format first.

When the date argument is a text representation of the date, the function uses the locale and date/time

settings of the client computer to understand the text value in order to perform the conversion. If the

current date/time settings represent dates in the format of Month/Day/Year, then the string, "1/8/2009",

is interpreted as a datetimedatetime value equivalent to January 8th of 2009. However, if the current date/time

settings represent dates in the format of Day/Month/Year, then the same string would be interpreted as a

datetimedatetime value equivalent to August 1st of 2009.

Example

= WEEKDAY([HireDate]+1)

 See also

The following example gets the date from the [HireDate] column, adds 1, and displays the weekday

corresponding to that date. Because the return_typereturn_type argument has been omitted, the default format is used, in

which 1 is Sunday and 7 is Saturday. If the result is 4, the day would be Wednesday.

Date and time functions

WEEKNUM function

YEARFRAC function

WEEKNUM
 10/26/2021 • 2 minutes to read

 Syntax

WEEKNUM(<date>[, <return_type>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

date The date in datetimedatetime format.

return_type (Optional) A number that determines on which day the week
begins. Default is 1. See Remarks.

 Return value

 Remarks

Returns the week number for the given date according to the return_typereturn_type value. The week number indicates

where the week falls numerically within a year.

There are two systems used for this function:

System 1System 1 - The week containing January 1 is the first week of the year and is numbered week 1.

System 2System 2 - The week containing the first Thursday of the year is the first week of the year and is numbered

as week 1. This system is the methodology specified in ISO 8601, which is commonly known as the European

week numbering system.

An integer number.

RET URN _T Y P ERET URN _T Y P E W EEK B EGIN S O NW EEK B EGIN S O N SY ST EMSY ST EM

1 or omitted Sunday 1

2 Monday 1

By default, the WEEKNUM function uses a calendar convention in which the week containing January 1 is

considered to be the first week of the year. However, the ISO 8601 calendar standard, widely used in

Europe, defines the first week as the one with the majority of days (four or more) falling in the new year.

This means that if return_typereturn_type is any valid value other than 21, for any years in which there are three

days or less in the first week of January, the WEEKNUM function returns week numbers that are different

from the ISO 8601 definition.

For return_typereturn_type, except for 21, the following valid values may not be supported by some DirectQuery

data sources:

 Example 1

= WEEKNUM("Feb 14, 2010", 2)

 Example 2

= WEEKNUM('Employees'[HireDate])

 See also

11 Monday 1

12 Tuesday 1

13 Wednesday 1

14 Thursday 1

15 Friday 1

16 Saturday 1

17 Sunday 1

21 Monday 2

RET URN _T Y P ERET URN _T Y P E W EEK B EGIN S O NW EEK B EGIN S O N SY ST EMSY ST EM

The following example returns the week number for February 14, 2010. This calculation assumes weeks begin

on Monday.

The following example returns the week number of the date stored in the column, HireDateHireDate, from the table,

EmployeesEmployees . This calculation assumes weeks begin on Sunday.

YEARFRAC function

WEEKDAY function

YEAR
 10/26/2021 • 2 minutes to read

 Syntax

YEAR(<date>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

date A date in datetimedatetime or text format, containing the year you
want to find.

 Return value

 Remarks

 Example

= YEAR("March 2007")

 Example - Date as result of expression
 DescriptionDescription

Returns the year of a date as a four digit integer in the range 1900-9999.

An integer in the range 1900-9999.

In contrast to Microsoft Excel, which stores dates as serial numbers, DAX uses a datetimedatetime data type to

work with dates and times.

Dates should be entered by using the DATE function, or as results of other formulas or functions. You can

also enter dates in accepted text representations of a date, such as March 3, 2007, or Mar-3-2003.

Values returned by the YEAR, MONTH, and DAY functions will be Gregorian values regardless of the

display format for the supplied date value. For example, if the display format of the supplied date uses the

Hijri calendar, the returned values for the YEAR, MONTH, and DAY functions will be values associated with

the equivalent Gregorian date.

When the date argument is a text representation of the date, the function uses the locale and date time

settings of the client computer to understand the text value in order to perform the conversion. Errors

may arise if the format of strings is incompatible with the current locale settings. For example, if your

locale defines dates to be formatted as month/day/year, and the date is provided as day/month/year, then

25/1/2009 will not be interpreted as January 25th of 2009 but as an invalid date.

The following example returns 2007.

The following example returns the year for today's date.

= YEAR(TODAY())

 See also
Date and time functions

HOUR function

MINUTE function

YEAR function

SECOND function

YEARFRAC
 10/26/2021 • 2 minutes to read

 Syntax

YEARFRAC(<start_date>, <end_date>, <basis>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

start_date The start date in datetimedatetime format.

end_date The end date in datetimedatetime format.

basis (Optional) The type of day count basis to use. All arguments
are truncated to integers.

Basis - Description

0 - US (NASD) 30/360

1 - Actual/actual

2 - Actual/360

3 - Actual/365

4 - European 30/360

 Return value

 Remarks

 Example 1

Calculates the fraction of the year represented by the number of whole days between two dates. Use the

YEARFRAC worksheet function to identify the proportion of a whole year's benefits or obligations to assign to a

specific term.

A decimal number. The internal data type is a signed IEEE 64-bit (8-byte) double-precision floating-point

number.

In contrast to Microsoft Excel, which stores dates as serial numbers, DAX uses a datetimedatetime format to work

with dates and times. If you need to view dates as serial numbers, you can use the formatting options in

Excel.

If star t_datestar t_date or end_dateend_date are not valid dates, YEARFRAC returns an error.

If basisbasis < 0 or if basisbasis > 4, YEARFRAC returns an error.

The following example returns the fraction of a year represented by the difference between the dates in the two

= YEARFRAC(Orders[TransactionDate],Orders[ShippingDate])

 Example 2

= YEARFRAC("Jan 1 2007","Mar 1 2007")

 See also

columns, TransactionDate and ShippingDate :

The following example returns the fraction of a year represented by the difference between the dates, January 1

and March 1:

Use four-digit years whenever possible, to avoid getting unexpected results. When the year is truncated, the

current year is assumed. When the date is or omitted, the first date of the month is assumed.

The second argument, basisbasis , has also been omitted. Therefore, the year fraction is calculated according to the

US (NASD) 30/360 standard.

Date and time functions

WEEKNUM function

YEARFRAC function

WEEKDAY function

Filter functions
 10/26/2021 • 2 minutes to read

 In this category

F UN C T IO NF UN C T IO N DESC RIP T IO NDESC RIP T IO N

ALL Returns all the rows in a table, or all the values in a column,
ignoring any filters that might have been applied.

ALLCROSSFILTERED Clear all filters which are applied to a table.

ALLEXCEPT Removes all context filters in the table except filters that have
been applied to the specified columns.

ALLNOBLANKROW From the parent table of a relationship, returns all rows but
the blank row, or all distinct values of a column but the blank
row, and disregards any context filters that might exist.

ALLSELECTED Removes context filters from columns and rows in the
current query, while retaining all other context filters or
explicit filters.

CALCULATE Evaluates an expression in a modified filter context.

CALCULATETABLE Evaluates a table expression in a modified filter context.

EARLIER Returns the current value of the specified column in an outer
evaluation pass of the mentioned column.

EARLIEST Returns the current value of the specified column in an outer
evaluation pass of the specified column.

FILTER Returns a table that represents a subset of another table or
expression.

KEEPFILTERS Modifies how filters are applied while evaluating a
CALCULATE or CALCULATETABLE function.

LOOKUPVALUE Returns the value for the row that meets all criteria specified
by search conditions. The function can apply one or more
search conditions.

REMOVEFILTERS Clears filters from the specified tables or columns.

The filter and value functions in DAX are some of the most complex and powerful, and differ greatly from Excel

functions. The lookup functions work by using tables and relationships, like a database. The filtering functions let

you manipulate data context to create dynamic calculations.

SELECTEDVALUE Returns the value when the context for columnName has
been filtered down to one distinct value only. Otherwise
returns alternateResult.

F UN C T IO NF UN C T IO N DESC RIP T IO NDESC RIP T IO N

ALL
 10/26/2021 • 7 minutes to read

 Syntax

ALL([<table> | <column>[, <column>[, <column>[,…]]]])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

table The table that you want to clear filters on.

column The column that you want to clear filters on.

 Return value

 Remarks

Returns all the rows in a table, or all the values in a column, ignoring any filters that might have been applied.

This function is useful for clearing filters and creating calculations on all the rows in a table.

The argument to the ALL function must be either a reference to a base table or a reference to a base column. You

cannot use table expressions or column expressions with the ALL function.

The table or column with filters removed.

F UN C T IO N A N D USA GEF UN C T IO N A N D USA GE DESC RIP T IO NDESC RIP T IO N

ALL() Removes all filters everywhere. ALL() can only be used to
clear filters but not to return a table.

This function is not used by itself, but serves as an intermediate function that can be used to change the

set of results over which some other calculation is performed.

The normal behavior for DAX expressions containing the ALL() function is that any filters applied will be

ignored. However, there are some scenarios where this is not the case because of auto-exist, a DAX

technology that optimizes filtering in order to reduce the amount of processing required for certain DAX

queries. An example where auto-exist and ALL() provide unexpected results is when filtering on two or

more columns of the same table (like when using slicers), and there is a measure on that same table that

uses ALL(). In this case, auto-exist will merge the multiple filters into one and will only filter on existing

combinations of values. Because of this merge, the measure will be calculated on the existing

combinations of values and the result will be based on filtered values instead of all values as expected. To

learn more about auto-exist and its effect on calculations, see Microsoft MVP Alberto Ferrari's

Understanding DAX Auto-Exist article on sql.bi.com.

The following table describes how you can use the ALL and ALLEXCEPT functions in different scenarios.

https://www.sqlbi.com/articles/understanding-dax-auto-exist/

 Example 1

RO W L A B EL SRO W L A B EL S A C C ESSO RIESA C C ESSO RIES B IKESB IKES C LOT H IN GC LOT H IN G C O M P O N EN T SC O M P O N EN T S GRA N D TOTA LGRA N D TOTA L

2005 0.02% 9.10% 0.04% 0.75% 9.91%

2006 0.11% 24.71% 0.60% 4.48% 29.90%

2007 0.36% 31.71% 1.07% 6.79% 39.93%

2008 0.20% 16.95% 0.48% 2.63% 20.26%

Grand Total 0.70% 82.47% 2.18% 14.65% 100.00%

ALL(Table) Removes all filters from the specified table. In effect,
ALL(Table) returns all of the values in the table, removing
any filters from the context that otherwise might have
been applied. This function is useful when you are
working with many levels of grouping, and want to
create a calculation that creates a ratio of an aggregated
value to the total value. The first example demonstrates
this scenario.

ALL (Column[, Column[, …]]) Removes all filters from the specified columns in the
table; all other filters on other columns in the table still
apply. All column arguments must come from the same
table. The ALL(Column) variant is useful when you want
to remove the context filters for one or more specific
columns and to keep all other context filters. The second
and third examples demonstrate this scenario.

ALLEXCEPT(Table, Column1 [,Column2]...) Removes all context filters in the table except filters that
are applied to the specified columns. This is a convenient
shortcut for situations in which you want to remove the
filters on many, but not all, columns in a table.

F UN C T IO N A N D USA GEF UN C T IO N A N D USA GE DESC RIP T IO NDESC RIP T IO N

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

Calculate ratio of Category Sales to Total Sales

Assume that you want to find the amount of sales for the current cell, in your PivotTable, divided by the total

sales for all resellers. To ensure that the denominator is the same regardless of how the PivotTable user might be

filtering or grouping the data, you define a formula that uses ALL to create the correct grand total.

The following table shows the results when a new measure, All Reseller Sales RatioAll Reseller Sales Ratio, is created using the

formula shown in the code section. To see how this works, add the field, CalendarYear, to the Row LabelsRow Labels area

of the PivotTable, and add the field, ProductCategoryName, to the Column LabelsColumn Labels area. Then, drag the

measure, All Reseller Sales RatioAll Reseller Sales Ratio, to the ValuesValues area of the Pivot Table. To view the results as percentages,

use the formatting features of Excel to apply a percentage number formatting to the cells that contains the

measure.

FormulaFormula

= SUMX(ResellerSales_USD, ResellerSales_USD[SalesAmount_USD])/SUMX(ALL(ResellerSales_USD),
ResellerSales_USD[SalesAmount_USD])

 Example 2

RO W L A B EL SRO W L A B EL S A C C ESSO RIESA C C ESSO RIES B IKESB IKES C LOT H IN GC LOT H IN G C O M P O N EN T SC O M P O N EN T S GRA N D TOTA LGRA N D TOTA L

2005 3.48% 11.03% 1.91% 5.12% 9.91%

2006 16.21% 29.96% 27.29% 30.59% 29.90%

2007 51.62% 38.45% 48.86% 46.36% 39.93%

2008 28.69% 20.56% 21.95% 17.92% 20.26%

Grand Total 100.00% 100.00% 100.00% 100.00% 100.00%

= SUMX(ResellerSales_USD, ResellerSales_USD[SalesAmount_USD])/CALCULATE(SUM(
ResellerSales_USD[SalesAmount_USD]), ALL(DateTime[CalendarYear]))

The formula is constructed as follows:

1. The numerator, SUMX(ResellerSales_USD, ResellerSales_USD[SalesAmount_USD]) , is the sum of the values in

ResellerSales_USD[SalesAmount_USD] for the current cell in the PivotTable, with context filters applied on

CalendarYear and ProductCategoryName.

2. For the denominator, you start by specifying a table, ResellerSales_USD, and use the ALL function to

remove all context filters on the table.

3. You then use the SUMX function to sum the values in the ResellerSales_USD[SalesAmount_USD] column.

In other words, you get the sum of ResellerSales_USD[SalesAmount_USD] for all resellers sales.

Calculate Ratio of Product Sales to Total Sales Through Current Year

Assume that you want to create a table showing the percentage of sales compared over the years for each

product category (ProductCategoryName). To obtain the percentage for each year over each value of

ProductCategoryName, you need to divide the sum of sales for that particular year and product category by the

sum of sales for the same product category over all years. In other words, you want to keep the filter on

ProductCategoryName but remove the filter on the year when calculating the denominator of the percentage.

The following table shows the results when a new measure, Reseller Sales YearReseller Sales Year , is created using the formula

shown in the code section. To see how this works, add the field, CalendarYear, to the Row LabelsRow Labels area of a

PivotTable, and add the field, ProductCategoryName, to the Column LabelsColumn Labels area. To view the results as

percentages, use Excel's formatting features to apply a percentage number format to the cells containing the

measure, Reseller Sales YearReseller Sales Year .

FormulaFormula

The formula is constructed as follows:

1. The numerator, SUMX(ResellerSales_USD, ResellerSales_USD[SalesAmount_USD]) , is the sum of the values in

ResellerSales_USD[SalesAmount_USD] for the current cell in the pivot table, with context filters applied

on the columns CalendarYear and ProductCategoryName.

2. For the denominator, you remove the existing filter on CalendarYear by using the ALL(Column) function.

 Example 3

RO W L A B EL SRO W L A B EL S A C C ESSO RIESA C C ESSO RIES B IKESB IKES C LOT H IN GC LOT H IN G C O M P O N EN T SC O M P O N EN T S GRA N D TOTA LGRA N D TOTA L

2005 0.25% 91.76% 0.42% 7.57% 100.00%

2006 0.38% 82.64% 1.99% 14.99% 100.00%

2007 0.90% 79.42% 2.67% 17.01% 100.00%

2008 0.99% 83.69% 2.37% 12.96% 100.00%

Grand Total 0.70% 82.47% 2.18% 14.65% 100.00%

= SUMX(ResellerSales_USD, ResellerSales_USD[SalesAmount_USD])/CALCULATE(SUM(
ResellerSales_USD[SalesAmount_USD]), ALL(ProductCategory[ProductCategoryName]))

 See also

This calculates the sum over the remaining rows on the ResellerSales_USD table, after applying the

existing context filters from the column labels. The net effect is that for the denominator the sum is

calculated over the selected ProductCategoryName (the implied context filter) and for all values in Year.

Calculate Contribution of Product Categories to Total Sales Per Year

Assume that you want to create a table that shows the percentage of sales for each product category, on a year-

by-year basis. To obtain the percentage for each product category in a particular year, you need to calculate the

sum of sales for that particular product category (ProductCategoryName) in year n, and then divide the

resulting value by the sum of sales for the year n over all product categories. In other words, you want to keep

the filter on year but remove the filter on ProductCategoryName when calculating the denominator of the

percentage.

The following table shows the results when a new measure, Reseller Sales Categor yNameReseller Sales Categor yName, is created using

the formula shown in the code section. To see how this works, add the field, CalendarYear to the Row LabelsRow Labels

area of the PivotTable, and add the field, ProductCategoryName, to the Column LabelsColumn Labels area. Then add the new

measure to the ValuesValues area of the PivotTable. To view the results as percentages, use Excel's formatting features

to apply a percentage number format to the cells that contain the new measure, Reseller SalesReseller Sales

Categor yNameCategor yName.

FormulaFormula

The formula is constructed as follows:

1. The numerator, SUMX(ResellerSales_USD, ResellerSales_USD[SalesAmount_USD]) , is the sum of the values in

ResellerSales_USD[SalesAmount_USD] for the current cell in the PivotTable, with context filters applied on

the fields, CalendarYear and ProductCategoryName.

2. For the denominator, you use the function, ALL(Column), to remove the filter on ProductCategoryName

and calculate the sum over the remaining rows on the ResellerSales_USD table, after applying the existing

context filters from the row labels. The net effect is that, for the denominator, the sum is calculated over

the selected Year (the implied context filter) and for all values of ProductCategoryName.

Filter functions

ALL function

ALLEXCEPT function

FILTER function

ALLCROSSFILTERED
 10/26/2021 • 2 minutes to read

 Syntax

ALLCROSSFILTERED(<table>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

table The table that you want to clear filters on.

 Return value

 Remarks

 Example

DEFINE
MEASURE FactInternetSales[TotalQuantity1] =
 CALCULATE(SUM(FactInternetSales[OrderQuantity]), ALLCROSSFILTERED(FactInternetSales))
MEASURE FactInternetSales[TotalQuantity2] =
 CALCULATE(SUM(FactInternetSales[OrderQuantity]), ALL(FactInternetSales))
EVALUATE
 SUMMARIZECOLUMNS(DimSalesReason[SalesReasonName],
 "TotalQuantity1", [TotalQuantity1],
 "TotalQuantity2", [TotalQuantity2])
 ORDER BY DimSalesReason[SalesReasonName]

DIM SA L ESREA SO N [SA L ESREA SO N N A MDIM SA L ESREA SO N [SA L ESREA SO N N A M
E]E] [TOTA LQ UA N T IT Y 1][TOTA LQ UA N T IT Y 1] [TOTA LQ UA N T IT Y 2][TOTA LQ UA N T IT Y 2]

Demo Event 60398

Magazine Advertisement 60398

Manufacturer 60398 1818

Clear all filters which are applied to a table.

N/A. See remarks.

ALLCROSSFILTERED can only be used to clear filters but not to return a table.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

Returns,

On Promotion 60398 7390

Other 60398 3653

Price 60398 47733

Quality 60398 1551

Review 60398 1640

Sponsorship 60398

Television Advertisement 60398 730

DIM SA L ESREA SO N [SA L ESREA SO N N A MDIM SA L ESREA SO N [SA L ESREA SO N N A M
E]E] [TOTA LQ UA N T IT Y 1][TOTA LQ UA N T IT Y 1] [TOTA LQ UA N T IT Y 2][TOTA LQ UA N T IT Y 2]

NOTENOTE
There is a direct or indirect many-to-many relationship between FactInternetSales table and DimSalesReason table.

ALLEXCEPT
 10/26/2021 • 2 minutes to read

 Syntax

ALLEXCEPT(<table>,<column>[,<column>[,…]])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

table The table over which all context filters are removed, except
filters on those columns that are specified in subsequent
arguments.

column The column for which context filters must be preserved.

 Return value

 Remarks

Removes all context filters in the table except filters that have been applied to the specified columns.

The first argument to the ALLEXCEPT function must be a reference to a base table. All subsequent arguments

must be references to base columns. You cannot use table expressions or column expressions with the

ALLEXCEPT function.

A table with all filters removed except for the filters on the specified columns.

F UN C T IO N A N D USA GEF UN C T IO N A N D USA GE DESC RIP T IO NDESC RIP T IO N

ALL(Table) Removes all filters from the specified table. In effect,
ALL(Table) returns all of the values in the table, removing
any filters from the context that otherwise might have
been applied. This function is useful when you are
working with many levels of grouping, and want to
create a calculation that creates a ratio of an aggregated
value to the total value.

ALL (Column[, Column[, …]]) Removes all filters from the specified columns in the
table; all other filters on other columns in the table still
apply. All column arguments must come from the same
table. The ALL(Column) variant is useful when you want
to remove the context filters for one or more specific
columns and to keep all other context filters.

This function is not used by itself, but serves as an intermediate function that can be used to change the

set of results over which some other calculation is performed.

ALL and ALLEXCEPT can be used in different scenarios:

 Example

= CALCULATE(SUM(ResellerSales_USD[SalesAmount_USD]), ALLEXCEPT(DateTime, DateTime[CalendarYear]))

 See also

ALLEXCEPT(Table, Column1 [,Column2]...) Removes all context filters in the table except filters that
are applied to the specified columns. This is a convenient
shortcut for situations in which you want to remove the
filters on many, but not all, columns in a table.

F UN C T IO N A N D USA GEF UN C T IO N A N D USA GE DESC RIP T IO NDESC RIP T IO N

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following measure formula sums SalesAmount_USD and uses the ALLEXCEPT function to remove any

context filters on the DateTime table except if the filter has been applied to the CalendarYear column.

Because the formula uses ALLEXCEPT, whenever any column but CalendarYear from the table DateTime is used

to slice a visualization, the formula will remove any slicer filters, providing a value equal to the sum of

SalesAmount_USD. However, if the column CalendarYear is used to slice the visualization, the results are

different. Because CalendarYear is specified as the argument to ALLEXCEPT, when the data is sliced on the year, a

filter will be applied on years at the row level

Filter functions

ALL function

FILTER function

ALLNOBLANKROW
 10/26/2021 • 4 minutes to read

 Syntax

ALLNOBLANKROW({<table> | <column>[, <column>[, <column>[,…]]]})

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

table The table over which all context filters are removed.

column A column over which all context filters are removed.

 Return value

 Remarks

From the parent table of a relationship, returns all rows but the blank row, or all distinct values of a column but

the blank row, and disregards any context filters that might exist.

Only one parameter must be passed; the parameter is either a table or a column.

A table, when the passed parameter was a table, or a column of values, when the passed parameter was a

column.

F UN C T IO N A N D USA GEF UN C T IO N A N D USA GE DESC RIP T IO NDESC RIP T IO N

ALL(Column) Removes all filters from the specified column in the table;
all other filters in the table, over other columns, still
apply.

ALL(Table) Removes all filters from the specified table.

ALLEXCEPT(Table,Col1,Col2...) Overrides all context filters in the table except over the
specified columns.

ALLNOBLANK(table|column) From the parent table of a relationship, returns all rows
but the blank row, or all distinct values of a column but
the blank row, and disregards any context filters that
might exist

The ALLNOBLANKROW function only filters the blank row that a parent table, in a relationship, will show

when there are one or more rows in the child table that have non-matching values to the parent column.

See the example below for a thorough explanation.

The following table summarizes the variations of ALL that are provided in DAX, and their differences:

For a general description of how the ALL function works, together with step-by-step examples that use

ALL(Table) and ALL(Column), see ALL function.

 Example

RO W L A B EL SRO W L A B EL S

2005

2006

2007

2008

Grand Total

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

In the sample data, the ResellerSales_USD table contains one row that has no values and therefore cannot be

related to any of the parent tables in the relationships within the workbook. You will use this table in a PivotTable

so that you can see the blank row behavior and how to handle counts on unrelated data.

Step 1: Verify the unrelated data

Open the Power Pivot windowPower Pivot window , then select the ResellerSales_USD table. In the ProductKey column, filter for

blank values. One row will remain. In that row, all column values should be blank except for

SalesOrderLineNumber.

Step 2: Create a PivotTable

Create a new PivotTable, then drag the column, datetime.[Calendar Year], to the Row Labels pane. The following

table shows the expected results:

Note the blank label between 20082008 and Grand TotalGrand Total . This blank label represents the Unknown member, which

is a special group that is created to account for any values in the child table that have no matching value in the

parent table, in this example the datetime.[Calendar Year] column.

When you see this blank label in the PivotTable, you know that in some of the tables that are related to the

column, datetime.[Calendar Year], there are either blank values or non-matching values. The parent table is the

one that shows the blank label, but the rows that do not match are in one or more of the child tables.

The rows that get added to this blank label group are either values that do not match any value in the parent

table-- for example, a date that does not exist in the datetime table-- or null values, meaning no value for date at

all. In this example we have placed a blank value in all columns of the child sales table. Having more values in

the parent table than in the children tables does not cause a problem.

Step 3: Count rows using ALL and ALLNOBLANK

Add the following two measures to the datetime table, to count the table rows: Countrows ALLNOBL ANK ofCountrows ALLNOBL ANK of

datetimedatetime, Countrows ALL of datetimeCountrows ALL of datetime. The formulas that you can use to define these measures are:

// Countrows ALLNOBLANK of datetime
= COUNTROWS(ALLNOBLANKROW('DateTime'))

// Countrows ALL of datetime
= COUNTROWS(ALL('DateTime'))

// Countrows ALLNOBLANKROW of ResellerSales_USD
= COUNTROWS(ALLNOBLANKROW('ResellerSales_USD'))

// Countrows ALL of ResellerSales_USD
= COUNTROWS(ALL('ResellerSales_USD'))

RO W L A B EL SRO W L A B EL S
C O UN T RO W S A L L N O B L A N K O FC O UN T RO W S A L L N O B L A N K O F
DAT ET IM EDAT ET IM E C O UN T RO W S A L L O F DAT ET IM EC O UN T RO W S A L L O F DAT ET IM E

2005 1280 1281

2006 1280 1281

2007 1280 1281

2008 1280 1281

1280 1281

Grand Total 1280 1281

RO W L A B EL SRO W L A B EL S
C O UN T RO W S A L L N O B L A N KRO W O FC O UN T RO W S A L L N O B L A N KRO W O F
RESEL L ERSA L ES_USDRESEL L ERSA L ES_USD

C O UN T RO W S A L L O FC O UN T RO W S A L L O F
RESEL L ERSA L ES_USDRESEL L ERSA L ES_USD

2005 60856 60856

2006 60856 60856

2007 60856 60856

2008 60856 60856

60856 60856

On a blank PivotTable add datetime.[Calendar Year] column to the row labels, and then add the newly created

measures. The results should look like the following table:

The results show a difference of 1 row in the table rows count. However, if you open the Power Pivot windowPower Pivot window

and select the datetime table, you cannot find any blank row in the table because the special blank row

mentioned here is the Unknown member.

Step 4: Verify that the count is accurate

In order to prove that the ALLNOBLANKROW does not count any truly blank rows, and only handles the special

blank row on the parent table only, add the following two measures to the ResellerSales_USD table: CountrowsCountrows

ALLNOBL ANKROW of ResellerSales_USDALLNOBL ANKROW of ResellerSales_USD, Countrows ALL of ResellerSales_USDCountrows ALL of ResellerSales_USD.

Create a new PivotTable, and drag the column, datetime.[Calendar Year], to the Row Labels pane. Now add the

measures that you just created. The results should look like the following:

Grand Total 60856 60856

RO W L A B EL SRO W L A B EL S
C O UN T RO W S A L L N O B L A N KRO W O FC O UN T RO W S A L L N O B L A N KRO W O F
RESEL L ERSA L ES_USDRESEL L ERSA L ES_USD

C O UN T RO W S A L L O FC O UN T RO W S A L L O F
RESEL L ERSA L ES_USDRESEL L ERSA L ES_USD

 See also

Now the two measures have the same results. That is because the ALLNOBLANKROW function does not count

truly blank rows in a table, but only handles the blank row that is a special case generated in a parent table,

when one or more of the child tables in the relationship contain non-matching values or blank values.

Filter functions

ALL function

FILTER function

ALLSELECTED
 10/26/2021 • 4 minutes to read

 Syntax

ALLSELECTED([<tableName> | <columnName>[, <columnName>[, <columnName>[,…]]]])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

tableName The name of an existing table, using standard DAX syntax.
This parameter cannot be an expression. This parameter is
optional.

columnName The name of an existing column using standard DAX syntax,
usually fully qualified. It cannot be an expression. This
parameter is optional.

 Return value

 Remarks

 Example

Removes context filters from columns and rows in the current query, while retaining all other context filters or

explicit filters.

The ALLSELECTED function gets the context that represents all rows and columns in the query, while keeping

explicit filters and contexts other than row and column filters. This function can be used to obtain visual totals in

queries.

The context of the query without any column and row filters.

If there is one argument, the argument is either tableName or columnName. If there is more than one

argument, they must be columns from the same table.

This function is different from ALL() because it retains all filters explicitly set within the query, and it

retains all context filters other than row and column filters.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following example shows how to generate different levels of visual totals in a table report using DAX

expressions. In the report two (2) previous filters have been applied to the Reseller Sales data; one on Sales

Territory Group = Europe and the other on Promotion Type = Volume Discount. Once filters have been applied,

visual totals can be calculated for the entire report, for All Years, or for All Product Categories. Also, for

illustration purposes the grand total for All Reseller Sales is obtained too, removing all filters in the report.

Evaluating the following DAX expression results in a table with all the information needed to build a table with

Visual Totals.

define
measure 'Reseller Sales'[Reseller Sales Amount]=sum('Reseller Sales'[Sales Amount])
measure 'Reseller Sales'[Reseller Grand Total]=calculate(sum('Reseller Sales'[Sales Amount]), ALL('Reseller
Sales'))
measure 'Reseller Sales'[Reseller Visual Total]=calculate(sum('Reseller Sales'[Sales Amount]),
ALLSELECTED())
measure 'Reseller Sales'[Reseller Visual Total for All of Calendar Year]=calculate(sum('Reseller
Sales'[Sales Amount]), ALLSELECTED('Date'[Calendar Year]))
measure 'Reseller Sales'[Reseller Visual Total for All of Product Category Name]=calculate(sum('Reseller
Sales'[Sales Amount]), ALLSELECTED('Product Category'[Product Category Name]))
evaluate
CalculateTable(
 //CT table expression
 summarize(
//summarize table expression
crossjoin(distinct('Product Category'[Product Category Name]), distinct('Date'[Calendar Year]))
//First Group by expression
, 'Product Category'[Product Category Name]
//Second Group by expression
, 'Date'[Calendar Year]
//Summary expressions
, "Reseller Sales Amount", [Reseller Sales Amount]
, "Reseller Grand Total", [Reseller Grand Total]
, "Reseller Visual Total", [Reseller Visual Total]
, "Reseller Visual Total for All of Calendar Year", [Reseller Visual Total for All of Calendar Year]
, "Reseller Visual Total for All of Product Category Name", [Reseller Visual Total for All of Product
Category Name]
)
//CT filters
, 'Sales Territory'[Sales Territory Group]="Europe", 'Promotion'[Promotion Type]="Volume Discount"
)
order by [Product Category Name], [Calendar Year]

[P RO DUC T[P RO DUC T
C AT EGO RYC AT EGO RY
N A M E]N A M E]

[C A L EN DA R[C A L EN DA R
Y EA R]Y EA R]

[RESEL L ER[RESEL L ER
SA L ESSA L ES
A M O UN T]A M O UN T]

[RESEL L ER[RESEL L ER
GRA N DGRA N D
TOTA L]TOTA L]

[RESEL L ER[RESEL L ER
VISUA LVISUA L
TOTA L]TOTA L]

[RESEL L ER[RESEL L ER
VISUA L TOTA LVISUA L TOTA L
F O R A L L O FF O R A L L O F
C A L EN DA RC A L EN DA R
Y EA R]Y EA R]

[RESEL L ER[RESEL L ER
VISUA L TOTA LVISUA L TOTA L
F O R A L L O FF O R A L L O F
P RO DUC TP RO DUC T
C AT EGO RYC AT EGO RY
N A M E]N A M E]

Accessories 2000 80450596.98
23

877006.7987 38786.018

Accessories 2001 80450596.98
23

877006.7987 38786.018

Accessories 2002 625.7933 80450596.98
23

877006.7987 38786.018 91495.3104

Accessories 2003 26037.3132 80450596.98
23

877006.7987 38786.018 572927.0136

Accessories 2004 12122.9115 80450596.98
23

877006.7987 38786.018 212584.4747

Accessories 2005 80450596.98
23

877006.7987 38786.018

After executing the above expression in SQL Server Management Studio against AdventureWorks DW Tabular

Model, you obtain the following results:

Accessories 2006 80450596.98
23

877006.7987 38786.018

Bikes 2000 80450596.98
23

877006.7987 689287.7939

Bikes 2001 80450596.98
23

877006.7987 689287.7939

Bikes 2002 73778.938 80450596.98
23

877006.7987 689287.7939 91495.3104

Bikes 2003 439771.4136 80450596.98
23

877006.7987 689287.7939 572927.0136

Bikes 2004 175737.4423 80450596.98
23

877006.7987 689287.7939 212584.4747

Bikes 2005 80450596.98
23

877006.7987 689287.7939

Bikes 2006 80450596.98
23

877006.7987 689287.7939

Clothing 2000 80450596.98
23

877006.7987 95090.7757

Clothing 2001 80450596.98
23

877006.7987 95090.7757

Clothing 2002 12132.4334 80450596.98
23

877006.7987 95090.7757 91495.3104

Clothing 2003 58234.2214 80450596.98
23

877006.7987 95090.7757 572927.0136

Clothing 2004 24724.1209 80450596.98
23

877006.7987 95090.7757 212584.4747

Clothing 2005 80450596.98
23

877006.7987 95090.7757

Clothing 2006 80450596.98
23

877006.7987 95090.7757

Components 2000 80450596.98
23

877006.7987 53842.2111

Components 2001 80450596.98
23

877006.7987 53842.2111

[P RO DUC T[P RO DUC T
C AT EGO RYC AT EGO RY
N A M E]N A M E]

[C A L EN DA R[C A L EN DA R
Y EA R]Y EA R]

[RESEL L ER[RESEL L ER
SA L ESSA L ES
A M O UN T]A M O UN T]

[RESEL L ER[RESEL L ER
GRA N DGRA N D
TOTA L]TOTA L]

[RESEL L ER[RESEL L ER
VISUA LVISUA L
TOTA L]TOTA L]

[RESEL L ER[RESEL L ER
VISUA L TOTA LVISUA L TOTA L
F O R A L L O FF O R A L L O F
C A L EN DA RC A L EN DA R
Y EA R]Y EA R]

[RESEL L ER[RESEL L ER
VISUA L TOTA LVISUA L TOTA L
F O R A L L O FF O R A L L O F
P RO DUC TP RO DUC T
C AT EGO RYC AT EGO RY
N A M E]N A M E]

Components 2002 4958.1457 80450596.98
23

877006.7987 53842.2111 91495.3104

Components 2003 48884.0654 80450596.98
23

877006.7987 53842.2111 572927.0136

Components 2004 80450596.98
23

877006.7987 53842.2111 212584.4747

Components 2005 80450596.98
23

877006.7987 53842.2111

Components 2006 80450596.98
23

877006.7987 53842.2111

[P RO DUC T[P RO DUC T
C AT EGO RYC AT EGO RY
N A M E]N A M E]

[C A L EN DA R[C A L EN DA R
Y EA R]Y EA R]

[RESEL L ER[RESEL L ER
SA L ESSA L ES
A M O UN T]A M O UN T]

[RESEL L ER[RESEL L ER
GRA N DGRA N D
TOTA L]TOTA L]

[RESEL L ER[RESEL L ER
VISUA LVISUA L
TOTA L]TOTA L]

[RESEL L ER[RESEL L ER
VISUA L TOTA LVISUA L TOTA L
F O R A L L O FF O R A L L O F
C A L EN DA RC A L EN DA R
Y EA R]Y EA R]

[RESEL L ER[RESEL L ER
VISUA L TOTA LVISUA L TOTA L
F O R A L L O FF O R A L L O F
P RO DUC TP RO DUC T
C AT EGO RYC AT EGO RY
N A M E]N A M E]

NOTENOTE

The columns in the report are:

Reseller Sales Amount

The actual value of Reseller Sales for the year and product category. This value appears in a cell in the center of

your report, at the intersection of year and catergory.

Reseller Visual Total for All of Calendar Year

The total value for a product category across all years. This value appears at the end of a column or row for a

given product category and across all years in the report.

Reseller Visual Total for All of Product Category Name

The total value for a year across all product categories. This value appears at the end of a column or row for a

given year and across all product categories in the report.

Reseller Visual Total

The total value for all years and product categories. This value usually appears in the bottom rightmost corner of

the table.

Reseller Grand Total

This is the grand total for all reseller sales, before any filter has been applied; you should notice the difference

with [Reseller Visual Total]. You do remember that this report includes two (2) filters, one on Product Category

Group and the other in Promotion Type.

if you have explicit filters in your expression, those filters are also applied to the expression.

CALCULATE
 10/26/2021 • 4 minutes to read

NOTENOTE

 Syntax

CALCULATE(<expression>[, <filter1> [, <filter2> [, …]]])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

expression The expression to be evaluated.

filter1, filter2,… (Optional) Boolean expressions or table expressions that
defines filters, or filter modifier functions.

 Boolean filter expressionsBoolean filter expressions

Evaluates an expression in a modified filter context.

There's also the CALCULATETABLE function. It performs exactly the same functionality, except it modifies the filter context

applied to an expression that returns a table object.

The expression used as the first parameter is essentially the same as a measure.

Filters can be:

Boolean filter expressions

Table filter expressions

Filter modification functions

When there are multiple filters, they can be evaluated by using the AND (&&) logical operator, meaning all

conditions must be TRUE, or by the OR (||) logical operator, meaning either condition can be true.

A Boolean expression filter is an expression that evaluates to TRUE or FALSE. There are several rules that they

must abide by:

They can reference columns from a single table.

They cannot reference measures.

They cannot use a nested CALCULATE function.

Beginning with the September 2021 release of Power BI Desktop, the following also apply:

They cannot use functions that scan or return a table unless they are passed as arguments to aggregation

functions.

They can contain an aggregation function that returns a scalar value. For example,

 Table filter expressionTable filter expression

 Filter modifier functionsFilter modifier functions

F UN C T IO NF UN C T IO N P URP O SEP URP O SE

REMOVEFILTERS Remove all filters, or filters from one or more columns of a
table, or from all columns of a single table.

ALL , ALLEXCEPT, ALLNOBLANKROW Remove filters from one or more columns, or from all
columns of a single table.

KEEPFILTERS Add filter without removing existing filters on the same
columns.

USERELATIONSHIP Engage an inactive relationship between related columns, in
which case the active relationship will automatically become
inactive.

CROSSFILTER Modify filter direction (from both to single, or from single to
both) or disable a relationship.

 Return value

 Remarks

Total sales on the last selected date =
CALCULATE (
 SUM (Sales[Sales Amount]),
 'Sales'[OrderDateKey] = MAX ('Sales'[OrderDateKey])
)

A table expression filter applies a table object as a filter. It could be a reference to a model table, but more likely

it's a function that returns a table object. You can use the FILTER function to apply complex filter conditions,

including those that cannot be defined by a Boolean filter expression.

Filter modifier functions allow you to do more than simply add filters. They provide you with additional control

when modifying filter context.

1

 The ALL function and its variants behave as both filter modifiers and as functions that return table objects. If

the REMOVEFILTERS function is supported by your tool, it's better to use it to remove filters.

1

The value that is the result of the expression.

When filter expressions are provided, the CALCULATE function modifies the filter context to evaluate the

expression. For each filter expression, there are two possible standard outcomes when the filter

expression is not wrapped in the KEEPFILTERS function:

If the columns (or tables) aren't in the filter context, then new filters will be added to the filter context

to evaluate the expression.

If the columns (or tables) are already in the filter context, the existing filters will be overwritten by the

new filters to evaluate the CALCULATE expression.

The CALCULATE function used without filters achieves a specific requirement. It transitions row context to

filter context. It's required when an expression (not a model measure) that summarizes model data needs

to be evaluated in row context. This scenario can happen in a calculated column formula or when an

expression in an iterator function is evaluated. Note that when a model measure is used in row context,

context transition is automatic.

 Examples

Blue Revenue =
CALCULATE(
 SUM(Sales[Sales Amount]),
 'Product'[Color] = "Blue"
)

C AT EGO RYC AT EGO RY SA L ES A M O UN TSA L ES A M O UN T B L UE REVEN UEB L UE REVEN UE

Accessories $1,272,057.89 $165,406.62

Bikes $94,620,526.21 $8,374,313.88

Clothing $2,117,613.45 $259,488.37

Components $11,799,076.66 $803,642.10

TotalTotal $109,809,274.20$109,809,274.20 $9,602,850.97$9,602,850.97

C H A N N ELC H A N N EL SA L ES A M O UN TSA L ES A M O UN T REVEN UE % TOTA L C H A N N ELREVEN UE % TOTA L C H A N N EL

Internet $29,358,677.22 26.74%

Reseller $80,450,596.98 73.26%

TotalTotal $109,809,274.20$109,809,274.20 100.00%100.00%

Revenue % Total Channel =
DIVIDE(
 SUM(Sales[Sales Amount]),
 CALCULATE(
 SUM(Sales[Sales Amount]),
 REMOVEFILTERS('Sales Order'[Channel])
)
)

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following SalesSales table measure definition produces a revenue result, but only for products that have the

color blue.

Examples in this article can be added to the Power BI Desktop sample model. To get the model, see DAX sample

model.

The CALCULATE function evaluates the sum of the SalesSales table Sales AmountSales Amount column in a modified filter

context. A new filter is added to the ProductProduct table ColorColor column—or, the filter overwrites any filter that's

already applied to the column.

The following SalesSales table measure definition produces a ratio of sales over sales for all sales channels.

The DIVIDE function divides an expression that sums of the SalesSales table Sales AmountSales Amount column value (in the

filter context) by the same expression in a modified filter context. It's the CALCULATE function that modifies the

filter context by using the REMOVEFILTERS function, which is a filter modifier function. It removes filters from

https://aka.ms/dax-docs-samples

Customer Segment =
IF(
 CALCULATE(SUM(Sales[Sales Amount]), ALLEXCEPT(Customer, Customer[CustomerKey])) < 2500,
 "Low",
 "High"
)

 See also

the Sales OrderSales Order table ChannelChannel column.

The following CustomerCustomer table calculated column definition classifies customers into a loyalty class. It's a very

simple scenario: When the revenue produced by the customer is less than $2500, they're classified as Low;

otherwise they're High.

In this example, row context is converted to the filter context. It's known as context transition. The ALLEXCEPT

function removes filters from all CustomerCustomer table columns except the CustomerKeyCustomerKey column.

Filter context

Row context

CALCULATETABLE function

Filter functions

CALCULATETABLE
 10/26/2021 • 3 minutes to read

NOTENOTE

 Syntax

CALCULATETABLE(<expression>[, <filter1> [, <filter2> [, …]]])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

expression The table expression to be evaluated.

filter1, filter2,… (Optional) Boolean expressions or table expressions that
defines filters, or filter modifier functions.

 Boolean filter expressionsBoolean filter expressions

 Table filter expressionTable filter expression

Evaluates a table expression in a modified filter context.

There's also the CALCULATE function. It performs exactly the same functionality, except it modifies the filter context

applied to an expression that returns a scalar value.

The expression used as the first parameter must be a model table or a function that returns a table.

Filters can be:

Boolean filter expressions

Table filter expressions

Filter modification functions

When there are multiple filters, they're evaluated by using the AND logical operator. That means all conditions

must be TRUE at the same time.

A Boolean expression filter is an expression that evaluates to TRUE or FALSE. There are several rules that they

must abide by:

They can reference only a single column.

They cannot reference measures.

They cannot use a nested CALCULATE function.

Beginning with the September 2021 release of Power BI Desktop, the following also apply:

They cannot use functions that scan or return a table unless they are passed as arguments to aggregation

functions.

They can contain an aggregation function that returns a scalar value.

A table expression filter applies a table object as a filter. It could be a reference to a model table, but more likely

it's a function that returns a table object. You can use the FILTER function to apply complex filter conditions,

 Filter modifier functionsFilter modifier functions

F UN C T IO NF UN C T IO N P URP O SEP URP O SE

REMOVEFILTERS Remove all filters, or filters from one or more columns of a
table, or from all columns of a single table.

ALL , ALLEXCEPT, ALLNOBLANKROW Remove filters from one or more columns, or from all
columns of a single table.

KEEPFILTERS Add filter without removing existing filters on the same
columns.

USERELATIONSHIP Engage an inactive relationship between related columns, in
which case the active relationship will automatically become
inactive.

CROSSFILTER Modify filter direction (from both to single, or from single to
both) or disable a relationship.

 Return value

 Remarks

 Example

including those that cannot be defined by a Boolean filter expression.

Filter modifier functions allow you to do more than simply add filters. They provide you with additional control

when modifying filter context.

1

 The ALL function and its variants behave as both filter modifiers and as functions that return table objects. If

the REMOVEFILTERS function is supported by your tool, it's better to use it to remove filters.

1

A table of values.

When filter expressions are provided, the CALCULATETABLE function modifies the filter context to

evaluate the expression. For each filter expression, there are two possible standard outcomes when the

filter expression is not wrapped in the KEEPFILTERS function:

If the columns (or tables) aren't in the filter context, then new filters will be added to the filter context

to evaluate the expression.

If the columns (or tables) are already in the filter context, the existing filters will be overwritten by the

new filters to evaluate the CALCULATETABLE expression.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following example uses the CALCULATETABLE function to get the sum of Internet sales for 2006. This value

is later used to calculate the ratio of Internet sales compared to all sales for the year 2006.

The following formula:

= SUMX(
 CALCULATETABLE(
 'InternetSales_USD',
 'DateTime'[CalendarYear] = 2006
),
 [SalesAmount_USD]
)

RO W L A B EL SRO W L A B EL S
IN T ERN ETIN T ERN ET
SA L ESA M O UN T _USDSA L ESA M O UN T _USD

C A L C UL AT ETA B L E 2006C A L C UL AT ETA B L E 2006
IN T ERN ET SA L ESIN T ERN ET SA L ES

IN T ERN ET SA L ES TO 2006IN T ERN ET SA L ES TO 2006
RAT IORAT IO

2005 $2,627,031.40 $5,681,440.58 0.46

2006 $5,681,440.58 $5,681,440.58 1.00

2007 $8,705,066.67 $5,681,440.58 1.53

2008 $9,041,288.80 $5,681,440.58 1.59

Grand Total $26,054,827.45 $5,681,440.58 4.59

 See also

It results in the following table:

Filter context

CALCULATE function (DAX)

Filter functions (DAX)

EARLIER
 10/26/2021 • 4 minutes to read

 Syntax

EARLIER(<column>, <number>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

column A column or expression that resolves to a column.

num (Optional) A positive number to the outer evaluation pass.

The next evaluation level out is represented by 1; two levels
out is represented by 2 and so on.

When omitted default value is 1.

 Return value

 Exceptions

 Remarks

Returns the current value of the specified column in an outer evaluation pass of the mentioned column.

EARLIER is useful for nested calculations where you want to use a certain value as an input and produce

calculations based on that input. In Microsoft Excel, you can do such calculations only within the context of the

current row; however, in DAX you can store the value of the input and then make calculation using data from the

entire table.

EARLIER is mostly used in the context of calculated columns.

The current value of row, from columncolumn, at numbernumber of outer evaluation passes.

Description of errors

EARLIEREARLIER succeeds if there is a row context prior to the beginning of the table scan. Otherwise it returns

an error.

The performance of EARLIEREARLIER might be slow because it theoretically, it might have to perform a number

of operations that is close to the total number of rows (in the column) times the same number

(depending on the syntax of the expression). For example if you have 10 rows in the column,

approximately a 100 operations could be required; if you have 100 rows then close to 10,000 operations

might be performed.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

NOTENOTE

 Example

P RO DUC T SUB C AT EGO RY KEP RO DUC T SUB C AT EGO RY KE
YY

EN GL ISH P RO DUC T SUB C AT EEN GL ISH P RO DUC T SUB C AT E
GO RY N A M EGO RY N A M E TOTA L SUB C AT EGO RY SA L ESTOTA L SUB C AT EGO RY SA L ES SUB C AT EGO RY RA N KIN GSUB C AT EGO RY RA N KIN G

18 Bib-Shorts $156,167.88 18

26 Bike Racks $220,720.70 14

27 Bike Stands $35,628.69 30

28 Bottles and Cages $59,342.43 24

5 Bottom Brackets $48,643.47 27

6 Brakes $62,113.16 23

19 Caps $47,934.54 28

7 Chains $8,847.08 35

29 Cleaners $16,882.62 32

8 Cranksets $191,522.09 15

9 Derailleurs $64,965.33 22

30 Fenders $41,974.10 29

10 Forks $74,727.66 21

20 Gloves $228,353.58 12

4 Handlebars $163,257.06 17

11 Headsets $57,659.99 25

31 Helmets $451,192.31 9

32 Hydration Packs $96,893.78 20

In practice, the VertiPaq in-memory analytics engine performs optimizations to reduce the actual number of calculations,

but you should be cautious when creating formulas that involve recursion.

To illustrate the use of EARLIER, it is necessary to build a scenario that calculates a rank value and then uses that

rank value in other calculations.

The following example is based on this simple table, ProductSubcategor yProductSubcategor y , which shows the total sales for

each ProductSubcategory.

The final table, including the ranking column is shown here.

21 Jerseys $699,429.78 7

33 Lights 36

34 Locks $15,059.47 33

1 Mountain Bikes $34,305,864.29 2

12 Mountain Frames $4,511,170.68 4

35 Panniers 36

13 Pedals $140,422.20 19

36 Pumps $12,695.18 34

2 Road Bikes $40,551,696.34 1

14 Road Frames $3,636,398.71 5

15 Saddles $52,526.47 26

22 Shorts $385,707.80 10

23 Socks $28,337.85 31

24 Tights $189,179.37 16

37 Tires and Tubes $224,832.81 13

3 Touring Bikes $13,334,864.18 3

16 Touring Frames $1,545,344.02 6

25 Vests $240,990.04 11

17 Wheels $648,240.04 8

P RO DUC T SUB C AT EGO RY KEP RO DUC T SUB C AT EGO RY KE
YY

EN GL ISH P RO DUC T SUB C AT EEN GL ISH P RO DUC T SUB C AT E
GO RY N A M EGO RY N A M E TOTA L SUB C AT EGO RY SA L ESTOTA L SUB C AT EGO RY SA L ES SUB C AT EGO RY RA N KIN GSUB C AT EGO RY RA N KIN G

 Creating a Rank Value

= COUNTROWS(FILTER(ProductSubcategory, EARLIER(ProductSubcategory[TotalSubcategorySales])
<ProductSubcategory[TotalSubcategorySales]))+1

One way to obtain a rank value for a given value in a row is to count the number of rows, in the same table, that

have a value larger (or smaller) than the one that is being compared. This technique returns a blank or zero

value for the highest value in the table, whereas equal values will have the same rank value and next value (after

the equal values) will have a non consecutive rank value. See the sample below.

A new calculated column, SubCategor ySalesRankingSubCategor ySalesRanking, is created by using the following formula.

 See also

The following steps describe the method of calculation in more detail.

1. The EARLIEREARLIER function gets the value of TotalSubcategorySales for the current row in the table. In this

case, because the process is starting, it is the first row in the table

2. EARLIEREARLIER ([TotalSubcategorySales]) evaluates to $156,167.88, the current row in the outer loop.

3. The FILTERFILTER function now returns a table where all rows have a value of TotalSubcategorySales larger

than $156,167.88 (which is the current value for EARLIEREARLIER).

4. The COUNTROWSCOUNTROWS function counts the rows of the filtered table and assigns that value to the new

calculated column in the current row plus 1. Adding 1 is needed to prevent the top ranked value from

become a Blank.

5. The calculated column formula moves to the next row and repeats steps 1 to 4. These steps are repeated

until the end of the table is reached.

The EARLIEREARLIER function will always get the value of the column prior to the current table operation. If you need to

get a value from the loop before that, set the second argument to 2.

EARLIEST function

Filter functions

EARLIEST
 10/26/2021 • 2 minutes to read

 Syntax

EARLIEST(<column>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

column A reference to a column.

 Return value

 Remarks

 Example

= EARLIEST(<column>)

 See also

Returns the current value of the specified column in an outer evaluation pass of the specified column.

A column with filters removed.

The EARLIEST function is similar to EARLIER, but lets you specify one additional level of recursion.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The current sample data does not support this scenario.

EARLIER function

Filter functions

FILTER
 10/26/2021 • 2 minutes to read

 Syntax

FILTER(<table>,<filter>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

table The table to be filtered. The table can also be an expression
that results in a table.

filter A Boolean expression that is to be evaluated for each row of
the table. For example, [Amount] > 0 or

[Region] = "France"

 Return value

 Remarks

 Example

FILTER('InternetSales_USD', RELATED('SalesTerritory'[SalesTerritoryCountry])<>"United States")

Returns a table that represents a subset of another table or expression.

A table containing only the filtered rows.

You can use FILTER to reduce the number of rows in the table that you are working with, and use only

specific data in calculations. FILTER is not used independently, but as a function that is embedded in other

functions that require a table as an argument.

For best practices when using FILTER, see Avoid using FILTER as a filter argument.

Use COUNTROWS instead of COUNT in DAX

This function is not supported for use in DirectQuery mode when used in calculated columns or row-level

security (RLS) rules.

The following example creates a report of Internet sales outside the United States by using a measure that filters

out sales in the United States, and then slicing by calendar year and product categories. To create this measure,

you filter the table, Internet Sales USD, by using Sales Territory, and then use the filtered table in a SUMX

function.

In this example, the expression:

Returns a table that is a subset of Internet Sales minus all rows that belong to the United States sales territory.

The RELATED function is what links the Territory key in the Internet Sales table to SalesTerritoryCountry in the

 Table 1. Comparing total sales for U.S. vs. all other regionsTable 1. Comparing total sales for U.S. vs. all other regions

RO W L A B EL SRO W L A B EL S IN T ERN ET SA L ESIN T ERN ET SA L ES N O N USA IN T ERN ET SA L ESN O N USA IN T ERN ET SA L ES

Australia $4,999,021.84 $4,999,021.84

Canada $1,343,109.10 $1,343,109.10

France $2,490,944.57 $2,490,944.57

Germany $2,775,195.60 $2,775,195.60

United Kingdom $5,057,076.55 $5,057,076.55

United States $9,389,479.79

Grand Total $26,054,827.45 $16,665,347.67

 Table 2. Comparing non- U.S. sales by product categoriesTable 2. Comparing non- U.S. sales by product categories

RO W L A B EL SRO W L A B EL S A C C ESSO RIESA C C ESSO RIES B IKESB IKES C LOT H IN GC LOT H IN G GRA N D TOTA LGRA N D TOTA L

2005 $1,526,481.95 $1,526,481.95

2006 $3,554,744.04 $3,554,744.04

2007 $156,480.18 $5,640,106.05 $70,142.77 $5,866,729.00

2008 $228,159.45 $5,386,558.19 $102,675.04 $5,717,392.68

Grand Total $384,639.63 $16,107,890.23 $172,817.81 $16,665,347.67

SUMX(FILTER('InternetSales_USD', RELATED('SalesTerritory'[SalesTerritoryCountry])<>"United States")
 ,'InternetSales_USD'[SalesAmount_USD])

 See also

SalesTerritory table.

The following table demonstrates the proof of concept for the measure, NON USA Internet Sales, the formula

for which is provided in the code section below. The table compares all Internet sales with non- USA Internet

sales, to show that the filter expression works, by excluding United States sales from the computation.

To re-create this table, add the field, SalesTerritoryCountry, to the Row LabelsRow Labels area of a report or PivotTable.

The final report table shows the results when you create a PivotTable by using the measure, NON USA Internet

Sales. Add the field, CalendarYear, to the Row LabelsRow Labels area of the PivotTable and add the field,

ProductCategoryName, to the Column LabelsColumn Labels area.

Filter functions

ALL function

ALLEXCEPT function

KEEPFILTERS
 10/26/2021 • 3 minutes to read

 Syntax

KEEPFILTERS(<expression>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

expression Any expression.

 Return value

 Remarks

 Example

Modifies how filters are applied while evaluating a CALCULATE or CALCULATETABLE function.

A table of values.

You use KEEPFILTERS within the context CALCULATE and CALCULATETABLE functions, to override the

standard behavior of those functions.

By default, filter arguments s in functions such as CALCULATE are used as the context for evaluating the

expression, and as such filter arguments for CALCULATE replace all existing filters over the same

columns. The new context effected by the filter argument for CALCULATE affects only existing filters on

columns mentioned as part of the filter argument. Filters on columns other than those mentioned in the

arguments of CALCULATE or other related functions remain in effect and unaltered.

The KEEPFILTERS function allows you to modify this behavior. When you use KEEPFILTERS, any existing

filters in the current context are compared with the columns in the filter arguments, and the intersection

of those arguments is used as the context for evaluating the expression. The net effect over any one

column is that both sets of arguments apply: both the filter arguments used in CALCULATE and the filters

in the arguments of the KEEPFILTER function. In other words, whereas CALCULATE filters replace the

current context, KEEPFILTERS adds filters to the current context.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following example takes you through some common scenarios that demonstrate use of the KEEPFILTERS

function as part of a CALCULATE or CALCULATETABLE formula.

The first three expressions obtain simple data to be used for comparisons:

Internet Sales for the state of Washington.

Internet Sales for the states of Washington and Oregon (both states combined).

EVALUATE ROW(
 "$$ in WA"
 , CALCULATE('Internet Sales'[Internet Total Sales]
 , 'Geography'[State Province Code]="WA"
)
, "$$ in WA and OR"
 , CALCULATE('Internet Sales'[Internet Total Sales]
 , 'Geography'[State Province Code]="WA"
 || 'Geography'[State Province Code]="OR"
)
, "$$ in WA and BC"
 , CALCULATE('Internet Sales'[Internet Total Sales]
 , 'Geography'[State Province Code]="WA"
 || 'Geography'[State Province Code]="BC"
)
, "$$ in WA and OR ??"
 , CALCULATE(
 CALCULATE('Internet Sales'[Internet Total Sales]
 ,'Geography'[State Province Code]="WA"
 || 'Geography'[State Province Code]="OR"
)
 , 'Geography'[State Province Code]="WA"
 || 'Geography'[State Province Code]="BC"
)
, "$$ in WA !!"
 , CALCULATE(
 CALCULATE('Internet Sales'[Internet Total Sales]
 , KEEPFILTERS('Geography'[State Province Code]="WA"
 || 'Geography'[State Province Code]="OR"
)
)
 , 'Geography'[State Province Code]="WA"
 || 'Geography'[State Province Code]="BC"
)
)

C O L UM NC O L UM N VA L UEVA L UE

[$$ in WA] $ 2,467,248.34

[$$ in WA and OR] $ 3,638,239.88

[$$ in WA and BC] $ 4,422,588.44

[$$ in WA and OR ??] $ 3,638,239.88

[$$ in WA !!] $ 2,467,248.34

Internet Sales for the state of Washington and the province of British Columbia (both regions combined).

The fourth expression calculates Internet Sales for Washington and Oregon, while the filter for Washington and

British Columbia is applied.

The next expression calculates Internet Sales for Washington and Oregon but uses KEEPFILTERS; the filter for

Washington and British Columbia is part of the prior context.

When this expression is evaluated against the sample database AdventureWorks DW, the following results are

obtained.

NOTENOTE

 See also

The above results were formatted to a table, instead of a single row, for educational purposes.

First, examine the expression, [$$ in WA and OR ??][$$ in WA and OR ??] . You might wonder how this formula could return the

value for sales in Washington and Oregon, since the outer CALCULATE expression includes a filter for

Washington and British Columbia. The answer is that the default behavior of CALCULATE overrides the outer

filters in 'Geography'[State Province Code] and substitutes its own filter arguments, because the filters apply to

the same column.

Next, examine the expression, [$$ in WA ! !][$$ in WA ! !] . You might wonder how this formula could return the value for

sales in Washington and nothing else, since the argument filter includes Oregon and the outer CALCULATE

expression includes a filter in Washington and British Columbia. The answer is that KEEPFILTERS modifies the

default behavior of CALCULATE and adds an additional filter. Because the intersection of filters is used, now the

outer filter 'Geography'[State Province Code]="WA" || 'Geography'[State Province Code]="BC")'Geography'[State Province Code]="WA" || 'Geography'[State Province Code]="BC") is

added to the filter argument 'Geography'[State Province Code]="WA" || 'Geography'[State Province'Geography'[State Province Code]="WA" || 'Geography'[State Province

Code]="OR"Code]="OR",. Because both filters apply to the same column, the resulting filter 'Geography'[State Province'Geography'[State Province

Code]="WA"Code]="WA" is the filter that is applied when evaluating the expression.

Filter functions

CALCULATE function

CALCULATETABLE function

LOOKUPVALUE
 10/26/2021 • 2 minutes to read

 Syntax

LOOKUPVALUE(
 <result_columnName>,
 <search_columnName>,
 <search_value>
 [, <search2_columnName>, <search2_value>]…
 [, <alternateResult>]
)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

result_columnName The name of an existing column that contains the value you
want to return. It cannot be an expression.

search_columnName The name of an existing column. It can be in the same table
as result_columnName or in a related table. It cannot be an
expression.

search_value The value to search for in search_columnName.

alternateResult (Optional) The value returned when the context for
result_columnName has been filtered down to zero or more
than one distinct value. When not provided, the function
returns BLANK when result_columnName is filtered down to
zero value or an error when more than one distinct value.

 Return value

 Remarks

Returns the value for the row that meets all criteria specified by one or more search conditions.

The value of result_columnresult_column at the row where all pairs of search_columnsearch_column and search_valuesearch_value have an exact

match.

If there's no match that satisfies all the search values, BLANK or alternateResultalternateResult (if supplied) is returned. In

other words, the function won't return a lookup value if only some of the criteria match.

If multiple rows match the search values and in all cases result_columnresult_column values are identical, then that value is

returned. However, if result_columnresult_column returns different values, an error or alternateResultalternateResult (if supplied) is

returned.

If there is a relationship between the result and search tables, in most cases, using RELATED function

instead of LOOKUPVALUE is more efficient and provides better performance.

The search_valuesearch_value and alternateResultalternateResult parameters are evaluated before the function iterates through

 Example

CHANNEL = LOOKUPVALUE('Sales Order'[Channel],'Sales Order'[SalesOrderLineKey],[SalesOrderLineKey])

CHANNEL = RELATED('Sales Order'[Channel])

 See also

the rows of the search table.

Avoid using ISERROR or IFERROR functions to capture an error returned by LOOKUPVALUE. If some

inputs to the function will result in an error when a single output value cannot be determined, providing

an alternateResult parameter is the most reliable and highest performing way to handle the error.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

Examples in this article can be added to the Power BI Desktop sample model. To get the model, see DAX sample

model.

The following calculated column defined in the SalesSales table uses the LOOKUPVALUE function to return channel

values from the Sales OrderSales Order table.

However, in this case, because there is a relationship between the Sales OrderSales Order and SalesSales tables, it's more

efficient to use the RELATED function.

RELATED function (DAX)

Information functions

https://aka.ms/dax-docs-samples

REMOVEFILTERS
 10/26/2021 • 2 minutes to read

 Syntax

REMOVEFILTERS([<table> | <column>[, <column>[, <column>[,…]]]])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

table The table that you want to clear filters on.

column The column that you want to clear filters on.

 Return value

 Remarks

 Example 1

DEFINE
MEASURE FactInternetSales[TotalSales] = SUM(FactInternetSales[SalesAmount])
MEASURE FactInternetSales[%Sales] = DIVIDE([TotalSales], CALCULATE([TotalSales],REMOVEFILTERS()))

EVALUATE
 SUMMARIZECOLUMNS(
 ROLLUPADDISSUBTOTAL(DimProductCategory[EnglishProductCategoryName], "IsGrandTotal"),
 "TotalSales", [TotalSales],
 "%Sales", [%Sales]
)
ORDER BY
 [IsGrandTotal] DESC, [TotalSales] DESC

Clear filters from the specified tables or columns.

N/A. See remarks.

REMOVEFILTERS can only be used to clear filters but not to return a table.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

DAX query

Returns

DIM P RO DUC TC AT EGO RY [EDIM P RO DUC TC AT EGO RY [E
N GL ISH P RO DUC TC AT EGO RN GL ISH P RO DUC TC AT EGO R
Y N A M E]Y N A M E] [ISGRA N DTOTA L][ISGRA N DTOTA L] [TOTA L SA L ES][TOTA L SA L ES] [% SA L ES][% SA L ES]

Row1 True 29358677.2207 1

Bikes False 28318144.6507 0.964557920570538

Accessories False 700759.96 0.023868921434441

Clothing False 339772.61 0.0115731579950215

 Example 2

DEFINE
MEASURE FactInternetSales[TotalSales] = SUM(FactInternetSales[SalesAmount])
MEASURE FactInternetSales[%Sales] = DIVIDE([TotalSales],
CALCULATE([TotalSales],REMOVEFILTERS(DimProductSubcategory[EnglishProductSubcategoryName])))

EVALUATE
 SUMMARIZECOLUMNS(
 DimProductCategory[EnglishProductCategoryName],
 DimProductSubcategory[EnglishProductSubcategoryName],
 "TotalSales", [TotalSales],
 "%Sales", [%Sales]
)
ORDER BY
 DimProductCategory[EnglishProductCategoryName] ASC,
 DimProductSubcategory[EnglishProductSubcategoryName] ASC

DIM P RO DUC TC AT EGO RYDIM P RO DUC TC AT EGO RY
[EN GL ISH P RO DUC TC AT EGO[EN GL ISH P RO DUC TC AT EGO
RY N A M E]RY N A M E]

DIM P RO DUC T SUB C AT EGO RDIM P RO DUC T SUB C AT EGO R
YY
[EN GL ISH P RO DUC T SUB C AT[EN GL ISH P RO DUC T SUB C AT
EGO RY N A M E]EGO RY N A M E] [TOTA L SA L ES][TOTA L SA L ES] [% SA L ES][% SA L ES]

Accessories Bike Racks 39360 0.05616759

Accessories Bike Stands 39591 0.05649723

Accessories Bottles and Cages 56798.19 0.08105228

Accessories Cleaners 7218.6 0.0103011

Accessories Fenders 46619.58 0.06652717

Accessories Helmets 225335.6 0.3215589

Accessories Hydration Packs 40307.67 0.05751994

Accessories Tires and Tubes 245529.32 0.35037578

Bikes Mountain Bikes 9952759.564 0.35146228

DAX query

Returns

Bikes Road Bikes 14520584.04 0.51276608

Bikes Touring Bikes 3844801.05 0.13577164

Clothing Caps 19688.1 0.05794493

Clothing Gloves 35020.7 0.10307099

Clothing Jerseys 172950.68 0.5090189

Clothing Shorts 71319.81 0.20990453

Clothing Socks 5106.32 0.01502864

Clothing Vests 35687 0.10503201

DIM P RO DUC TC AT EGO RYDIM P RO DUC TC AT EGO RY
[EN GL ISH P RO DUC TC AT EGO[EN GL ISH P RO DUC TC AT EGO
RY N A M E]RY N A M E]

DIM P RO DUC T SUB C AT EGO RDIM P RO DUC T SUB C AT EGO R
YY
[EN GL ISH P RO DUC T SUB C AT[EN GL ISH P RO DUC T SUB C AT
EGO RY N A M E]EGO RY N A M E] [TOTA L SA L ES][TOTA L SA L ES] [% SA L ES][% SA L ES]

SELECTEDVALUE
 10/26/2021 • 2 minutes to read

 Syntax

SELECTEDVALUE(<columnName>[, <alternateResult>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

columnName The name of an existing column, using standard DAX syntax.
It cannot be an expression.

alternateResult (Optional) The value returned when the context for
columnName has been filtered down to zero or more than
one distinct value. When not provided, the default value is
BLANK().

 Return value

 Remarks

 Example

DEFINE
 MEASURE DimProduct[Selected Color] = SELECTEDVALUE(DimProduct[Color], "No Single Selection")
EVALUATE
 SUMMARIZECOLUMNS
 (ROLLUPADDISSUBTOTAL(DimProduct[Color], "Is Total"),
 "Selected Color", [Selected Color])ORDER BY [Is Total] ASC,
 [Color] ASC

Returns the value when the context for columnName has been filtered down to one distinct value only.

Otherwise returns alternateResult.

The value when the context for columnName has been filtered down to one distinct value only. Else,

alternateResult.

An equivalent expression for SELECTEDVALUE(<columnName>, <alternateResult>) is

IF(HASONEVALUE(<columnName>), VALUES(<columnName>), <alternateResult>) .

To learn more about best practices when using SELECTEDVALUE, see Use SELECTEDVALUE instead of

VALUES in DAX.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query:

Returns the following:

DIM P RO DUC T [C O LO R]DIM P RO DUC T [C O LO R] [IS TOTA L][IS TOTA L] [SEL EC T ED C O LO R][SEL EC T ED C O LO R]

Black FALSE Black

Blue FALSE Blue

Grey FALSE Grey

Multi FALSE Multi

NA FALSE NA

Red FALSE Red

Silver FALSE Silver

Silver/Black FALSE Silver/Black

White FALSE White

Yellow FALSE Yellow

TRUE No Single Selection

Financial functions
 10/26/2021 • 4 minutes to read

 In this category

F UN C T IO NF UN C T IO N DESC RIP T IO NDESC RIP T IO N

ACCRINT Returns the accrued interest for a security that pays periodic
interest.

ACCRINTM Returns the accrued interest for a security that pays interest
at maturity.

AMORDEGRC Returns the depreciation for each accounting period. Similar
to AMORLINC, except a depreciation coefficient is applied
depending on the life of the assets.

AMORLINC Returns the depreciation for each accounting period.

COUPDAYBS Returns the number of days from the beginning of a coupon
period until its settlement date.

COUPDAYS Returns the number of days in the coupon period that
contains the settlement date.

COUPDAYSNC Returns the number of days from the settlement date to the
next coupon date.

COUPNCD Returns the next coupon date after the settlement date.

COUPNUM Returns the number of coupons payable between the
settlement date and maturity date, rounded up to the
nearest whole coupon.

COUPPCD Returns the previous coupon date before the settlement
date.

CUMIPMT Returns the cumulative interest paid on a loan between
start_period and end_period.

CUMPRINC Returns the cumulative principal paid on a loan between
start_period and end_period.

DB Returns the depreciation of an asset for a specified period
using the fixed-declining balance method.

Financial functions in DAX are used in formulas that perform financial calculations, such as net present value

and rate of return. These functions are similar to financial functions used in Microsoft Excel.

DDB Returns the depreciation of an asset for a specified period
using the double-declining balance method or some other
method you specify.

DISC Returns the discount rate for a security.

DOLLARDE Converts a dollar price expressed as an integer part and a
fraction part, such as 1.02, into a dollar price expressed as a
decimal number.

DOLLARFR Converts a dollar price expressed as an integer part and a
fraction part, such as 1.02, into a dollar price expressed as a
decimal number.

DURATION Returns the Macauley duration for an assumed par value of
$100.

EFFECT Returns the effective annual interest rate, given the nominal
annual interest rate and the number of compounding
periods per year.

FV Calculates the future value of an investment based on a
constant interest rate.

INTRATE Returns the interest rate for a fully invested security.

IPMT Returns the interest payment for a given period for an
investment based on periodic, constant payments and a
constant interest rate.

ISPMT Calculates the interest paid (or received) for the specified
period of a loan (or investment) with even principal
payments.

MDURATION Returns the modified Macauley duration for a security with
an assumed par value of $100.

NOMINAL Returns the nominal annual interest rate, given the effective
rate and the number of compounding periods per year.

NPER Returns the number of periods for an investment based on
periodic, constant payments and a constant interest rate.

ODDFPRICE Returns the price per $100 face value of a security having an
odd (short or long) first period.

ODDFYIELD Returns the yield of a security that has an odd (short or
long) first period.

ODDLPRICE Returns the price per $100 face value of a security having an
odd (short or long) last coupon period.

ODDLYIELD Returns the yield of a security that has an odd (short or
long) last period.

F UN C T IO NF UN C T IO N DESC RIP T IO NDESC RIP T IO N

PDURATION Returns the number of periods required by an investment to
reach a specified value.

PMT Calculates the payment for a loan based on constant
payments and a constant interest rate.

PPMT Returns the payment on the principal for a given period for
an investment based on periodic, constant payments and a
constant interest rate.

PRICE Returns the price per $100 face value of a security that pays
periodic interest.

PRICEDISC Returns the price per $100 face value of a discounted
security.

PRICEMAT Returns the price per $100 face value of a security that pays
interest at maturity.

PV Calculates the present value of a loan or an investment,
based on a constant interest rate.

RATE Returns the interest rate per period of an annuity.

RECEIVED Returns the amount received at maturity for a fully invested
security.

RRI Returns an equivalent interest rate for the growth of an
investment.

SLN Returns the straight-line depreciation of an asset for one
period.

SYD Returns the sum-of-years' digits depreciation of an asset for
a specified period.

TBILLEQ Returns the bond-equivalent yield for a Treasury bill.

TBILLPRICE Returns the price per $100 face value for a Treasury bill.

TBILLYIELD Returns the yield for a Treasury bill.

VDB Returns the depreciation of an asset for any period you
specify, including partial periods, using the double-declining
balance method or some other method you specify.

XIRR Returns the internal rate of return for a schedule of cash
flows that is not necessarily periodic.

XNPV Returns the present value for a schedule of cash flows that is
not necessarily periodic.

YIELD Returns the yield on a security that pays periodic interest.

F UN C T IO NF UN C T IO N DESC RIP T IO NDESC RIP T IO N

YIELDDISC Returns the annual yield for a discounted security.

YIELDMAT Returns the annual yield of a security that pays interest at
maturity.

F UN C T IO NF UN C T IO N DESC RIP T IO NDESC RIP T IO N

ACCRINT
 10/26/2021 • 2 minutes to read

 Syntax

ACCRINT(<issue>, <first_interest>, <settlement>, <rate>, <par>, <frequency>[, <basis>[, <calc_method>]])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

issue The security's issue date.

first_interest The security's first interest date.

settlement The security's settlement date. The security settlement date
is the date after the issue date when the security is traded to
the buyer.

rate The security's annual coupon rate.

par The security's par value.

frequency The number of coupon payments per year. For annual
payments, frequency = 1; for semiannual, frequency = 2; for
quarterly, frequency = 4.

basis (Optional) The type of day count basis to use. If basis is
omitted, it is assumed to be 0. The accepted values are listed
below this table.

calc_method (Optional) A logical value that specifies the way to calculate
the total accrued interest when the date of settlement is
later than the date of first_interest. If calc_method is omitted,
it is assumed to be TRUE.
- If calc_method evaluates to TRUE or is omitted, ACCRINT
returns the total accrued interest from issue to settlement.
- If calc_method evaluates to FALSE, ACCRINT returns the
accrued interest from first_interest to settlement.

B A SISB A SIS DAY C O UN T B A SISDAY C O UN T B A SIS

0 or omitted US (NASD) 30/360

1 Actual/actual

2 Actual/360

Returns the accrued interest for a security that pays periodic interest.

The basisbasis parameter accepts the following values:

3 Actual/365

4 European 30/360

B A SISB A SIS DAY C O UN T B A SISDAY C O UN T B A SIS

 Return Value

 Remarks

 Examples

DATADATA DESC RIP T IO NDESC RIP T IO N

1-March-2007 Issue date

31-August-2008 First interest date

1-May-2008 Settlement date

10% Coupon rate

The accrued interest.

Dates are stored as sequential serial numbers so they can be used in calculations. In DAX, December 30,

1899 is day 0, and January 1, 2008 is 39448 because it is 39,448 days after December 30, 1899.

ACCRINT is calculated as follows:

$$\text{ACCRINT} = \text{par} \times \frac{\text{rate}}{\text{frequency}} \times

\sum^{\text{NC}}_{i=1}\frac{\text{A}_{i}}{\text{NL}_{i}}$$

where:

A_{i} = number of accrued days for the i^{th} quasi-coupon period within odd period.

NC = number of quasi-coupon periods that fit in odd period. If this number contains a

fraction, raise it to the next whole number.

NL_{i} = normal length in days of the quasi-coupon period within odd period.

issue, first_interest, and settlement are truncated to integers.

frequency and basis are rounded to the nearest integer.

An error is returned if:

issue, first_interest, or settlement is not a valid date.

issue ≥ settlement.

rate ≤ 0.

par ≤ 0.

frequency is any number other than 1, 2, or 4.

basis < 0 or basis > 4.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

1000 Par value

2 Frequency is semiannual (see above)

0 30/360 basis (see above)

DATADATA DESC RIP T IO NDESC RIP T IO N

 Example 1Example 1

EVALUATE
{
 ACCRINT(DATE(2007,3,1), DATE(2008,8,31), DATE(2008,5,1), 0.1, 1000, 2, 0)
}

[VA L UE][VA L UE]

116.944444444444

 Example 2Example 2

EVALUATE
{
 ACCRINT(DATE(2007,3,1), DATE(2008,8,31), DATE(2008,5,1), 0.1, 1000, 2, 0, FALSE)
}

[VA L UE][VA L UE]

66.9444444444445

The following DAX query:

Returns the accrued interest from issue to settlement, for a security with the terms specified above.

The following DAX query:

Returns the accrued interest from first_interest to settlement, for a security with the terms specified above.

ACCRINTM
 10/26/2021 • 2 minutes to read

 Syntax

ACCRINTM(<issue>, <maturity>, <rate>, <par>[, <basis>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

issue The security's issue date.

maturity The security's maturity date.

rate The security's annual coupon rate.

par The security's par value.

basis (Optional) The type of day count basis to use. If basis is
omitted, it is assumed to be 0. The accepted values are listed
below this table.

B A SISB A SIS DAY C O UN T B A SISDAY C O UN T B A SIS

0 or omitted US (NASD) 30/360

1 Actual/actual

2 Actual/360

3 Actual/365

4 European 30/360

 Return Value

 Remarks

Returns the accrued interest for a security that pays interest at maturity.

The basisbasis parameter accepts the following values:

The accrued interest.

Dates are stored as sequential serial numbers so they can be used in calculations. In DAX, December 30,

1899 is day 0, and January 1, 2008 is 39448 because it is 39,448 days after December 30, 1899.

ACCRINTM is calculated as follows:

 Example

DATADATA DESC RIP T IO NDESC RIP T IO N

1-April-2008 Issue date

15-June-2008 Maturity date

10% Percent coupon

1000 Par value

3 Actual/365 basis (see above)

EVALUATE
{
 ACCRINTM(DATE(2008,4,1), DATE(2008,6,15), 0.1, 1000, 3)
}

[VA L UE][VA L UE]

20.5479452054795

$$\text{ACCRINTM} = \text{par} \times \text{rate} \times \frac{\text{A}}{\text{D}}$$

where:

A = Number of accrued days counted according to a monthly basis. For interest at maturity

items, the number of days from the issue date to the maturity date is used.

D = Annual Year Basis.

issue and maturity are truncated to integers.

basis is rounded to the nearest integer.

An error is returned if:

issue or maturity is not a valid date.

issue ≥ maturity.

rate ≤ 0.

par ≤ 0.

basis < 0 or basis > 4.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query:

Returns the accrued interest for a security with the terms specified above.

AMORDEGRC
 10/26/2021 • 2 minutes to read

 Syntax

AMORDEGRC(<cost>, <date_purchased>, <first_period>, <salvage>, <period>, <rate>[, <basis>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

cost The cost of the asset.

date_purchased The date of the purchase of the asset.

first_period The date of the end of the first period.

salvage The salvage value at the end of the life of the asset.

period The period.

rate The rate of depreciation.

basis (Optional) The type of day count basis to use. If basis is
omitted, it is assumed to be 0. The accepted values are listed
below this table.

B A SISB A SIS DAT E SY ST EMDAT E SY ST EM

0 or omitted 360 days (NASD method)

1 Actual

3 365 days in a year

4 360 days in a year (European method)

 Return Value

Returns the depreciation for each accounting period. This function is provided for the French accounting system.

If an asset is purchased in the middle of the accounting period, the prorated depreciation is taken into account.

The function is similar to AMORLINC, except that a depreciation coefficient is applied in the calculation

depending on the life of the assets.

The basisbasis parameter accepts the following values:

The depreciation for each accounting period.

Remarks

 Example

DATADATA DESC RIP T IO NDESC RIP T IO N

2400 Cost

19-August-2008 Date purchased

31-December-2008 End of the first period

300 Salvage value

1 Period

15% Depreciation rate

1 Actual basis (see above)

L IF E O F A SSET S (1/ RAT E)L IF E O F A SSET S (1/ RAT E) DEP REC IAT IO N C O EF F IC IEN TDEP REC IAT IO N C O EF F IC IEN T

Between 3 and 4 years 1.5

Between 5 and 6 years 2

More than 6 years 2.5

Dates are stored as sequential serial numbers so they can be used in calculations. In DAX, December 30,

1899 is day 0, and January 1, 2008 is 39448 because it is 39,448 days after December 30, 1899.

This function will return the depreciation until the last period of the life of the assets or until the

cumulated value of depreciation is greater than the cost of the assets minus the salvage value.

The depreciation coefficients are:

The depreciation rate will grow to 50 percent for the period preceding the last period and will grow to

100 percent for the last period.

period and basis are rounded to the nearest integer.

An error is returned if:

cost < 0.

first_period or date_purchased is not a valid date.

date_purchased > first_period.

salvage < 0 or salvage > cost.

period < 0.

rate ≤ 0.

The life of assets is between 0 (zero) and 1, 1 and 2, 2 and 3, or 4 and 5.

basis is any number other than 0, 1, 3, or 4.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

EVALUATE
{
 AMORDEGRC(2400, DATE(2008,8,19), DATE(2008,12,31), 300, 1, 0.15, 1)
}

[VA L UE][VA L UE]

776

The following DAX query:

Returns the first period's depreciation, given the terms specified above.

AMORLINC
 10/26/2021 • 2 minutes to read

 Syntax

AMORLINC(<cost>, <date_purchased>, <first_period>, <salvage>, <period>, <rate>[, <basis>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

cost The cost of the asset.

date_purchased The date of the purchase of the asset.

first_period The date of the end of the first period.

salvage The salvage value at the end of the life of the asset.

period The period.

rate The rate of depreciation.

basis (Optional) The type of day count basis to use. If basis is
omitted, it is assumed to be 0. The accepted values are listed
below this table.

B A SISB A SIS DAT E SY ST EMDAT E SY ST EM

0 or omitted 360 days (NASD method)

1 Actual

3 365 days in a year

4 360 days in a year (European method)

 Return Value

 Remarks

Returns the depreciation for each accounting period. This function is provided for the French accounting system.

If an asset is purchased in the middle of the accounting period, the prorated depreciation is taken into account.

The basisbasis parameter accepts the following values:

The depreciation for each accounting period.

Dates are stored as sequential serial numbers so they can be used in calculations. In DAX, December 30,

 Example

DATADATA DESC RIP T IO NDESC RIP T IO N

2400 Cost

19-August-2008 Date purchased

31-December-2008 End of the first period

300 Salvage value

1 Period

15% Depreciation rate

1 Actual basis (see above)

EVALUATE
{
 AMORLINC(2400, DATE(2008,8,19), DATE(2008,12,31), 300, 1, 0.15, 1)
}

[VA L UE][VA L UE]

360

1899 is day 0, and January 1, 2008 is 39448 because it is 39,448 days after December 30, 1899.

period and basis are rounded to the nearest integer.

An error is returned if:

cost < 0.

first_period or date_purchased is not a valid date.

date_purchased > first_period.

salvage < 0 or salvage > cost.

period < 0.

rate ≤ 0.

basis is any number other than 0, 1, 3, or 4.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query:

Returns the first period's depreciation, given the terms specified above.

COUPDAYBS
 10/26/2021 • 2 minutes to read

 Syntax

COUPDAYBS(<settlement>, <maturity>, <frequency>[, <basis>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

settlement The security's settlement date. The security settlement date
is the date after the issue date when the security is traded to
the buyer.

maturity The security's maturity date. The maturity date is the date
when the security expires.

frequency The number of coupon payments per year. For annual
payments, frequency = 1; for semiannual, frequency = 2; for
quarterly, frequency = 4.

basis (Optional) The type of day count basis to use. If basis is
omitted, it is assumed to be 0. The accepted values are listed
below this table.

B A SISB A SIS DAY C O UN T B A SISDAY C O UN T B A SIS

0 or omitted US (NASD) 30/360

1 Actual/actual

2 Actual/360

3 Actual/365

4 European 30/360

 Return Value

 Remarks

Returns the number of days from the beginning of a coupon period until its settlement date.

The basisbasis parameter accepts the following values:

The number of days from the beginning of a coupon period until its settlement date.

Dates are stored as sequential serial numbers so they can be used in calculations. In DAX, December 30,

1899 is day 0, and January 1, 2008 is 39448 because it is 39,448 days after December 30, 1899.

 Example

DATADATA DESC RIP T IO NDESC RIP T IO N

25-Jan-11 Settlement date

15-Nov-11 Maturity date

2 Semiannual coupon (see above)

1 Actual/actual basis (see above)

EVALUATE
{
 COUPDAYBS(DATE(2011,1,25), DATE(2011,11,15), 2, 1)
}

[VA L UE][VA L UE]

71

The settlement date is the date a buyer purchases a coupon, such as a bond. The maturity date is the date

when a coupon expires. For example, suppose a 30-year bond is issued on January 1, 2008, and is

purchased by a buyer six months later. The issue date would be January 1, 2008, the settlement date

would be July 1, 2008, and the maturity date would be January 1, 2038, 30 years after the January 1,

2008, issue date.

settlement and maturity are truncated to integers.

frequency and basis are rounded to the nearest integer.

An error is returned if:

settlement or maturity is not a valid date.

settlement ≥ maturity.

frequency is any number other than 1, 2, or 4.

basis < 0 or basis > 4.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query:

Returns the number of days from the beginning of the coupon period until the settlement date, for a bond with

terms above.

COUPDAYS
 10/26/2021 • 2 minutes to read

 Syntax

COUPDAYS(<settlement>, <maturity>, <frequency>[, <basis>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

settlement The security's settlement date. The security settlement date
is the date after the issue date when the security is traded to
the buyer.

maturity The security's maturity date. The maturity date is the date
when the security expires.

frequency The number of coupon payments per year. For annual
payments, frequency = 1; for semiannual, frequency = 2; for
quarterly, frequency = 4.

basis (Optional) The type of day count basis to use. If basis is
omitted, it is assumed to be 0. The accepted values are listed
below this table.

B A SISB A SIS DAY C O UN T B A SISDAY C O UN T B A SIS

0 or omitted US (NASD) 30/360

1 Actual/actual

2 Actual/360

3 Actual/365

4 European 30/360

 Return Value

 Remarks

Returns the number of days in the coupon period that contains the settlement date.

The basisbasis parameter accepts the following values:

The number of days in the coupon period that contains the settlement date.

Dates are stored as sequential serial numbers so they can be used in calculations. In DAX, December 30,

1899 is day 0, and January 1, 2008 is 39448 because it is 39,448 days after December 30, 1899.

 Example

DATADATA DESC RIP T IO NDESC RIP T IO N

25-Jan-11 Settlement date

15-Nov-11 Maturity date

2 Semiannual coupon (see above)

1 Actual/actual basis (see above)

EVALUATE
{
 COUPDAYS(DATE(2011,1,25), DATE(2011,11,15), 2, 1)
}

[VA L UE][VA L UE]

181

The settlement date is the date a buyer purchases a coupon, such as a bond. The maturity date is the date

when a coupon expires. For example, suppose a 30-year bond is issued on January 1, 2008, and is

purchased by a buyer six months later. The issue date would be January 1, 2008, the settlement date

would be July 1, 2008, and the maturity date is January 1, 2038, 30 years after the January 1, 2008 issue

date.

settlement and maturity are truncated to integers.

frequency and basis are rounded to the nearest integer.

An error is returned if:

settlement or maturity is not a valid date.

settlement ≥ maturity.

frequency is any number other than 1, 2, or 4.

basis < 0 or basis > 4.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query:

Returns the number of days in the coupon period that contains the settlement date, for a bond with the terms

specified above.

COUPDAYSNC
 10/26/2021 • 2 minutes to read

 Syntax

COUPDAYSNC(<settlement>, <maturity>, <frequency>[, <basis>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

settlement The security's settlement date. The security settlement date
is the date after the issue date when the security is traded to
the buyer.

maturity The security's maturity date. The maturity date is the date
when the security expires.

frequency The number of coupon payments per year. For annual
payments, frequency = 1; for semiannual, frequency = 2; for
quarterly, frequency = 4.

basis (Optional) The type of day count basis to use. If basis is
omitted, it is assumed to be 0. The accepted values are listed
below this table.

B A SISB A SIS DAY C O UN T B A SISDAY C O UN T B A SIS

0 or omitted US (NASD) 30/360

1 Actual/actual

2 Actual/360

3 Actual/365

4 European 30/360

 Return Value

 Remarks

Returns the number of days from the settlement date to the next coupon date.

The basisbasis parameter accepts the following values:

The number of days from the settlement date to the next coupon date.

Dates are stored as sequential serial numbers so they can be used in calculations. In DAX, December 30,

1899 is day 0, and January 1, 2008 is 39448 because it is 39,448 days after December 30, 1899.

 Example

DATADATA DESC RIP T IO NDESC RIP T IO N

25-Jan-11 Settlement date

15-Nov-11 Maturity date

2 Semiannual coupon (see above)

1 Actual/actual basis (see above)

EVALUATE
{
 COUPDAYSNC(DATE(2011,1,25), DATE(2011,11,15), 2, 1)
}

[VA L UE][VA L UE]

110

The settlement date is the date a buyer purchases a coupon, such as a bond. The maturity date is the date

when a coupon expires. For example, suppose a 30-year bond is issued on January 1, 2008, and is

purchased by a buyer six months later. The issue date would be January 1, 2008, the settlement date

would be July 1, 2008, and the maturity date would be January 1, 2038, which is 30 years after the

January 1, 2008, issue date.

settlement and maturity are truncated to integers.

frequency and basis are rounded to the nearest integer.

An error is returned if:

settlement or maturity is not a valid date.

settlement ≥ maturity.

frequency is any number other than 1, 2, or 4.

basis < 0 or basis > 4.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query:

Returns the number of days from the settlement date to the next coupon date, for a bond with the terms

specified above.

COUPNCD
 10/26/2021 • 2 minutes to read

 Syntax

COUPNCD(<settlement>, <maturity>, <frequency>[, <basis>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

settlement The security's settlement date. The security settlement date
is the date after the issue date when the security is traded to
the buyer.

maturity The security's maturity date. The maturity date is the date
when the security expires.

frequency The number of coupon payments per year. For annual
payments, frequency = 1; for semiannual, frequency = 2; for
quarterly, frequency = 4.

basis (Optional) The type of day count basis to use. If basis is
omitted, it is assumed to be 0. The accepted values are listed
below this table.

B A SISB A SIS DAY C O UN T B A SISDAY C O UN T B A SIS

0 or omitted US (NASD) 30/360

1 Actual/actual

2 Actual/360

3 Actual/365

4 European 30/360

 Return Value

 Remarks

Returns the next coupon date after the settlement date.

The basisbasis parameter accepts the following values:

The next coupon date after the settlement date.

Dates are stored as sequential serial numbers so they can be used in calculations. In DAX, December 30,

1899 is day 0, and January 1, 2008 is 39448 because it is 39,448 days after December 30, 1899.

 Example

DATADATA DESC RIP T IO NDESC RIP T IO N

25-Jan-11 Settlement date

15-Nov-11 Maturity date

2 Semiannual coupon (see above)

1 Actual/actual basis (see above)

EVALUATE
{
 COUPNCD(DATE(2011,1,25), DATE(2011,11,15), 2, 1)
}

[VA L UE][VA L UE]

5/15/2011 12:00:00 AM

The settlement date is the date a buyer purchases a coupon, such as a bond. The maturity date is the date

when a coupon expires. For example, suppose a 30-year bond is issued on January 1, 2008, and is

purchased by a buyer six months later. The issue date would be January 1, 2008, the settlement date

would be July 1, 2008, and the maturity date is January 1, 2038, 30 years after the January 1, 2008 issue

date.

settlement and maturity are truncated to integers.

frequency and basis are rounded to the nearest integer.

An error is returned if:

settlement or maturity is not a valid date.

settlement ≥ maturity.

frequency is any number other than 1, 2, or 4.

basis < 0 or basis > 4.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query:

Returns the next coupon date after the settlement date, for a bond with the terms specified above.

COUPNUM
 10/26/2021 • 2 minutes to read

 Syntax

COUPNUM(<settlement>, <maturity>, <frequency>[, <basis>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

settlement The security's settlement date. The security settlement date
is the date after the issue date when the security is traded to
the buyer.

maturity The security's maturity date. The maturity date is the date
when the security expires.

frequency The number of coupon payments per year. For annual
payments, frequency = 1; for semiannual, frequency = 2; for
quarterly, frequency = 4.

basis (Optional) The type of day count basis to use. If basis is
omitted, it is assumed to be 0. The accepted values are listed
below this table.

B A SISB A SIS DAY C O UN T B A SISDAY C O UN T B A SIS

0 or omitted US (NASD) 30/360

1 Actual/actual

2 Actual/360

3 Actual/365

4 European 30/360

 Return Value

 Remarks

Returns the number of coupons payable between the settlement date and maturity date, rounded up to the

nearest whole coupon.

The basisbasis parameter accepts the following values:

The number of coupons payable between the settlement date and maturity date.

Dates are stored as sequential serial numbers so they can be used in calculations. In DAX, December 30,

 Example

DATADATA DESC RIP T IO NDESC RIP T IO N

25-Jan-07 Settlement date

15-Nov-08 Maturity date

2 Semiannual coupon (see above)

1 Actual/actual basis (see above)

EVALUATE
{
 COUPNUM(DATE(2007,1,25), DATE(2008,11,15), 2, 1)
}

[VA L UE][VA L UE]

4

1899 is day 0, and January 1, 2008 is 39448 because it is 39,448 days after December 30, 1899.

The settlement date is the date a buyer purchases a coupon, such as a bond. The maturity date is the date

when a coupon expires. For example, suppose a 30-year bond is issued on January 1, 2008, and is

purchased by a buyer six months later. The issue date would be January 1, 2008, the settlement date

would be July 1, 2008, and the maturity date would be January 1, 2038, which is 30 years after the

January 1, 2008, issue date.

settlement and maturity are truncated to integers.

frequency and basis are rounded to the nearest integer.

An error is returned if:

settlement or maturity is not a valid date.

settlement ≥ maturity.

frequency is any number other than 1, 2, or 4.

basis < 0 or basis > 4.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query:

Returns the number of coupon payments for a bond with the terms specified above.

COUPPCD
 10/26/2021 • 2 minutes to read

 Syntax

COUPPCD(<settlement>, <maturity>, <frequency>[, <basis>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

settlement The security's settlement date. The security settlement date
is the date after the issue date when the security is traded to
the buyer.

maturity The security's maturity date. The maturity date is the date
when the security expires.

frequency The number of coupon payments per year. For annual
payments, frequency = 1; for semiannual, frequency = 2; for
quarterly, frequency = 4.

basis (Optional) The type of day count basis to use. If basis is
omitted, it is assumed to be 0. The accepted values are listed
below this table.

B A SISB A SIS DAY C O UN T B A SISDAY C O UN T B A SIS

0 or omitted US (NASD) 30/360

1 Actual/actual

2 Actual/360

3 Actual/365

4 European 30/360

 Return Value

 Remarks

Returns the previous coupon date before the settlement date.

The basisbasis parameter accepts the following values:

The previous coupon date before the settlement date.

Dates are stored as sequential serial numbers so they can be used in calculations. In DAX, December 30,

1899 is day 0, and January 1, 2008 is 39448 because it is 39,448 days after December 30, 1899.

 Example

DATADATA DESC RIP T IO NDESC RIP T IO N

25-Jan-11 Settlement date

15-Nov-11 Maturity date

2 Semiannual coupon (see above)

1 Actual/actual basis (see above)

EVALUATE
{
 COUPPCD(DATE(2011,1,25), DATE(2011,11,15), 2, 1)
}

[VA L UE][VA L UE]

11/15/2010 12:00:00 AM

The settlement date is the date a buyer purchases a coupon, such as a bond. The maturity date is the date

when a coupon expires. For example, suppose a 30-year bond is issued on January 1, 2008, and is

purchased by a buyer six months later. The issue date would be January 1, 2008, the settlement date

would be July 1, 2008, and the maturity date would be January 1, 2038, which is 30 years after the

January 1, 2008, issue date.

settlement and maturity are truncated to integers.

frequency and basis are rounded to the nearest integer.

An error is returned if:

settlement or maturity is not a valid date.

settlement ≥ maturity.

frequency is any number other than 1, 2, or 4.

basis < 0 or basis > 4.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query:

Returns the previous coupon date before the settlement date, for a bond using the terms specified above.

CUMIPMT
 10/26/2021 • 2 minutes to read

 Syntax

CUMIPMT(<rate>, <nper>, <pv>, <start_period>, <end_period>, <type>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

rate The interest rate.

nper The total number of payment periods.

pv The present value.

start_period The first period in the calculation. Must be between 1 and
end_period (inclusive).

end_period The last period in the calculation. Must be between
start_period and nper (inclusive).

type The timing of the payment. The accepted values are listed
below this table.

T Y P ET Y P E T IM IN GT IM IN G

0 (zero) Payment at the end of the period

1 Payment at the beginning of the period

 Return Value

 Remarks

Returns the cumulative interest paid on a loan between start_period and end_period.

The typetype parameter accepts the following values:

The cumulative interest paid in the specified period.

Make sure that you are consistent about the units you use for specifying rate and nper. If you make

monthly payments on a four-year loan at an annual interest rate of 10 percent, use 0.1/12 for rate and

4*12 for nper. If you make annual payments on the same loan, use 0.1 for rate and 4 for nper.

start_period, end_period, and type are rounded to the nearest integer.

An error is returned if:

 Examples

DATADATA DESC RIP T IO NDESC RIP T IO N

9% Annual interest rate

30 Years of the loan

125000 Present value

 Example 1Example 1

EVALUATE
{
 CUMIPMT(0.09/12, 30*12, 125000, 13, 24, 1)
}

[VA L UE][VA L UE]

-11052.3395838718

 Example 2Example 2

EVALUATE
{
 CUMIPMT(0.09/12, 30*12, 125000, 1, 1, 0)
}

[VA L UE][VA L UE]

-937.5

rate ≤ 0.

nper < 1.

pv ≤ 0.

start_period < 1 or start_period > end_period.

end_period < start_period or end_period > nper.

type is any number other than 0 or 1.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query:

Returns the total interest paid in the second year of payments, periods 13 through 24, assuming that the

payments are made at the beginning of each month.

The following DAX query:

Returns the interest paid in a single payment in the first month, assuming that the payment is made at the end

of the month.

CUMPRINC
 10/26/2021 • 2 minutes to read

 Syntax

CUMPRINC(<rate>, <nper>, <pv>, <start_period>, <end_period>, <type>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

rate The interest rate.

nper The total number of payment periods.

pv The present value.

start_period The first period in the calculation. Must be between 1 and
end_period (inclusive).

end_period The last period in the calculation. Must be between
start_period and nper (inclusive).

type The timing of the payment. The accepted values are listed
below this table.

T Y P ET Y P E T IM IN GT IM IN G

0 (zero) Payment at the end of the period

1 Payment at the beginning of the period

 Return Value

 Remarks

Returns the cumulative principal paid on a loan between start_period and end_period.

The typetype parameter accepts the following values:

The cumulative principal paid in the specified period.

Make sure that you are consistent about the units you use for specifying rate and nper. If you make

monthly payments on a four-year loan at an annual interest rate of 10 percent, use 0.1/12 for rate and

4*12 for nper. If you make annual payments on the same loan, use 0.1 for rate and 4 for nper.

start_period, end_period, and type are rounded to the nearest integer.

An error is returned if:

 Examples

DATADATA DESC RIP T IO NDESC RIP T IO N

9% Annual interest rate

30 Term in years

125000 Present value

 Example 1Example 1

EVALUATE
{
 CUMPRINC(0.09/12, 30*12, 125000, 13, 24, 1)
}

[VA L UE][VA L UE]

-927.153472378062

 Example 2Example 2

EVALUATE
{
 CUMPRINC(0.09/12, 30*12, 125000, 1, 1, 0)
}

[VA L UE][VA L UE]

-68.2782711809784

rate ≤ 0.

nper < 1.

pv ≤ 0.

start_period < 1 or start_period > end_period.

end_period < start_period or end_period > nper.

type is any number other than 0 or 1.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query:

Returns the total principal paid in the second year of payments, periods 13 through 24, assuming the payments

are made at the beginning of each month.

The following DAX query:

Returns the principal paid in a single payment in the first month, assuming the payment is made at the end of

the month.

DB
 10/26/2021 • 2 minutes to read

 Syntax

DB(<cost>, <salvage>, <life>, <period>[, <month>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

cost The initial cost of the asset.

salvage The value at the end of the depreciation (sometimes called
the salvage value of the asset). This value can be 0.

life The number of periods over which the asset is being
depreciated (sometimes called the useful life of the asset).

period The period for which you want to calculate the depreciation.
Period must use the same units as life. Must be between 1
and life (inclusive).

month (Optional) The number of months in the first year. If month
is omitted, it is assumed to be 12.

 Return Value

 Remarks

Returns the depreciation of an asset for a specified period using the fixed-declining balance method.

The depreciation over the specified period.

The fixed-declining balance method computes depreciation at a fixed rate. DB uses the following formulas

to calculate depreciation for a period:

$$(\text{cost} - \text{total depreciation from prior periods}) \times \text{rate}$$

where:

$\text{rate} = 1 - ((\frac{\text{salvage}}{\text{cost}})^{(\frac{1}{\text{life}})})\text{, rounded to three

decimal places}$

Depreciation for the first and last periods is a special case.

For the first period, DB uses this formula:

$$\frac{\text{cost} \times \text{rate} \times \text{month}}{12}$$

For the last period, DB uses this formula:

$$\frac{(\text{cost} - \text{total depreciation from prior periods}) \times \text{rate} \times (12 -

 Examples
 Example 1Example 1

EVALUATE
{
 DB(1000000, 0, 6, 1, 2)
}

[VA L UE][VA L UE]

166666.666666667

 Example 2Example 2

DEFINE
VAR NumDepreciationPeriods = MAX(Asset[LifeTimeYears])+1
VAR DepreciationPeriods = GENERATESERIES(1, NumDepreciationPeriods)
EVALUATE
ADDCOLUMNS (
 DepreciationPeriods,
 "Current Period Total Depreciation",
 SUMX (
 FILTER (
 Asset,
 [Value] <= [LifetimeYears]+1
),
 DB([InitialCost], [SalvageValue], [LifetimeYears], [Value], 7)
)
)

\text{month})}{12}$$

period and month are rounded to the nearest integer.

An error is returned if:

cost < 0.

salvage < 0.

life < 1.

period < 1 or period > life.

month < 1 or month > 12.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query:

Returns an asset's depreciation in the last two months of the first year, assuming it will be worth \$0 after 6

years.

The following calculates the total depreciation of all assets in different years over their lifetimes. Here, the first

year only includes 7 months of depreciation, and the last year only includes 5 months.

DDB
 10/26/2021 • 2 minutes to read

 Syntax

DDB(<cost>, <salvage>, <life>, <period>[, <factor>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

cost The initial cost of the asset.

salvage The value at the end of the depreciation (sometimes called
the salvage value of the asset). This value can be 0.

life The number of periods over which the asset is being
depreciated (sometimes called the useful life of the asset).

period The period for which you want to calculate the depreciation.
Period must use the same units as life. Must be between 1
and life (inclusive).

factor (Optional) The rate at which the balance declines. If factor is
omitted, it is assumed to be 2 (the double-declining balance
method).

 Return Value

 Remarks

Returns the depreciation of an asset for a specified period using the double-declining balance method or some

other method you specify.

The depreciation over the specified period.

The double-declining balance method computes depreciation at an accelerated rate. Depreciation is

highest in the first period and decreases in successive periods. DDB uses the following formula to

calculate depreciation for a period:

$$\text{Min}((\text{cost} - \text{total depreciation from prior periods}) \times (\frac{\text{factor}}

{\text{life}}),(\text{cost} - \text{salvage} - \text{total depreciation from prior periods}))$$

Change factor if you do not want to use the double-declining balance method.

Use the VDB function if you want to switch to the straight-line depreciation method when depreciation is

greater than the declining balance calculation.

period is rounded to the nearest integer.

An error is returned if:

 Examples
 Example 1Example 1

EVALUATE
{
 DDB(1000000, 0, 10, 5, 1.5)
}

[VA L UE][VA L UE]

78300.9375

 Example 2Example 2

DEFINE
VAR NumDepreciationPeriods = MAX(Asset[LifeTimeYears])
VAR DepreciationPeriods = GENERATESERIES(1, NumDepreciationPeriods)
EVALUATE
 ADDCOLUMNS (
 DepreciationPeriods,
 "Current Period Total Depreciation",
 SUMX (
 FILTER (
 Asset,
 [Value] <= [LifetimeYears]
),
 DDB([InitialCost], [SalvageValue], [LifetimeYears], [Value])
)
)

cost < 0.

salvage < 0.

life < 1.

period < 1 or period > life.

factor ≤ 0.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query:

Returns an asset's depreciation in the 5th year, assuming it will be worth \$0 after 10 years. This

calculation uses a factor of 1.5.

The following calculates the total depreciation of all assets in different years over their lifetimes. This calculation

uses the default factor of 2 (the double-declining balance method).

DISC
 10/26/2021 • 2 minutes to read

 Syntax

DISC(<settlement>, <maturity>, <pr>, <redemption>[, <basis>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

settlement The security's settlement date. The security settlement date
is the date after the issue date when the security is traded to
the buyer.

maturity The security's maturity date. The maturity date is the date
when the security expires.

pr The security's price per \$100 face value.

redemption The security's redemption value per \$100 face value.

basis (Optional) The type of day count basis to use. If basis is
omitted, it is assumed to be 0. The accepted values are listed
below this table.

B A SISB A SIS DAY C O UN T B A SISDAY C O UN T B A SIS

0 or omitted US (NASD) 30/360

1 Actual/actual

2 Actual/360

3 Actual/365

4 European 30/360

 Return Value

 Remarks

Returns the discount rate for a security.

The basisbasis parameter accepts the following values:

The discount rate.

Dates are stored as sequential serial numbers so they can be used in calculations. In DAX, December 30,

1899 is day 0, and January 1, 2008 is 39448 because it is 39,448 days after December 30, 1899.

 Example

DATADATA DESC RIP T IO NDESC RIP T IO N

07/01/2018 Settlement date

01/01/2048 Maturity date

97.975 Price

100 Redemption value

1 Actual/actual basis (see above)

EVALUATE
{
 DISC(DATE(2018,7,1), DATE(2048,1,1), 97.975, 100, 1)
}

The settlement date is the date a buyer purchases a coupon, such as a bond. The maturity date is the date

when a coupon expires. For example, suppose a 30-year bond is issued on January 1, 2018, and is

purchased by a buyer six months later. The issue date would be January 1, 2018, the settlement date

would be July 1, 2018, and the maturity date would be January 1, 2048, 30 years after the January 1,

2018, issue date.

DISC is calculated as follows:

$$\text{DISC} = \frac{\text{redemption} - \text{par}}{\text{redemption}} \times \frac{\text{B}}

{\text{DSM}}$$

where:

B = number of days in a year, depending on the year basis.

DSM = number of days between settlement and maturity.

settlement and maturity are truncated to integers.

basis is rounded to the nearest integer.

An error is returned if:

settlement or maturity is not a valid date.

settlement ≥ maturity.

pr ≤ 0.

redemption ≤ 0.

basis < 0 or basis > 4.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query:

Returns the bond discount rate, for a bond with the terms specified above.

[VA L UE][VA L UE]

0.000686384169121348

DOLLARDE
 10/26/2021 • 2 minutes to read

 Syntax

DOLLARDE(<fractional_dollar>, <fraction>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

fractional_dollar A number expressed as an integer part and a fraction part,
separated by a decimal symbol.

fraction The integer to use in the denominator of the fraction.

 Return Value

 Remarks

 Example

EVALUATE
{
 DOLLARDE(1.02, 16)
}

Converts a dollar price expressed as an integer part and a fraction part, such as 1.02, into a dollar price

expressed as a decimal number. Fractional dollar numbers are sometimes used for security prices.

The decimal value of fractional_dollar.

The fraction part of the value is divided by an integer that you specify. For example, if you want your price

to be expressed to a precision of 1/16 of a dollar, you divide the fraction part by 16. In this case, 1.02

represents \$1.125 (\$1 + 2/16 = \$1.125).

fraction is rounded to the nearest integer.

An error is returned if:

fraction < 1.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query:

Returns 1.125, the decimal price of the original fractional price, 1.02, read as 1 and 2/16. Since the fraction value

is 16, the price has a precision of 1/16 of a dollar.

DOLLARFR
 10/26/2021 • 2 minutes to read

 Syntax

DOLLARFR(<decimal_dollar>, <fraction>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

decimal_dollar A decimal number.

fraction The integer to use in the denominator of the fraction.

 Return Value

 Remarks

 Example

EVALUATE
{
 DOLLARFR(1.125, 16)
}

Converts a dollar price expressed as a decimal number into a dollar price expressed as an integer part and a

fraction part, such as 1.02. Fractional dollar numbers are sometimes used for security prices.

The fractional value of decimal_dollar, expressed as an integer part and a fraction part.

fraction is rounded to the nearest integer.

An error is returned if:

fraction < 1.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query:

Returns 1.02, read as 1 and 2/16, which is the corresponding fraction price of the original decimal price, 1.125.

Since the fraction value is 16, the price has a precision of 1/16 of a dollar.

DURATION
 10/26/2021 • 2 minutes to read

 Syntax

DURATION(<settlement>, <maturity>, <coupon>, <yld>, <frequency>[, <basis>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

settlement The security's settlement date. The security settlement date
is the date after the issue date when the security is traded to
the buyer.

maturity The security's maturity date. The maturity date is the date
when the security expires.

coupon The security's annual coupon rate.

yld The security's annual yield.

frequency The number of coupon payments per year. For annual
payments, frequency = 1; for semiannual, frequency = 2; for
quarterly, frequency = 4.

basis (Optional) The type of day count basis to use. If basis is
omitted, it is assumed to be 0. The accepted values are listed
below this table.

B A SISB A SIS DAY C O UN T B A SISDAY C O UN T B A SIS

0 or omitted US (NASD) 30/360

1 Actual/actual

2 Actual/360

3 Actual/365

4 European 30/360

 Return Value

Returns the Macauley duration for an assumed par value of \$100. Duration is defined as the weighted average

of the present value of cash flows, and is used as a measure of a bond price's response to changes in yield.

The basisbasis parameter accepts the following values:

The Macauley duration.

 Remarks

 Example

DATADATA DESC RIP T IO NDESC RIP T IO N

07/01/2018 Settlement date

01/01/2048 Maturity date

8.0% Percent coupon

9.0% Percent yield

2 Frequency is semiannual (see above)

1 Actual/actual basis (see above)

EVALUATE
{
 DURATION(DATE(2018,7,1), DATE(2048,1,1), 0.08, 0.09, 2, 1)
}

[VA L UE][VA L UE]

10.9191452815919

Dates are stored as sequential serial numbers so they can be used in calculations. In DAX, December 30,

1899 is day 0, and January 1, 2008 is 39448 because it is 39,448 days after December 30, 1899.

The settlement date is the date a buyer purchases a coupon, such as a bond. The maturity date is the date

when a coupon expires. For example, suppose a 30-year bond is issued on January 1, 2008, and is

purchased by a buyer six months later. The issue date would be January 1, 2008, the settlement date

would be July 1, 2008, and the maturity date is January 1, 2038, which is 30 years after the January 1,

2008, issue date.

settlement and maturity are truncated to integers.

frequency, and basis are rounded to the nearest integer.

An error is returned if:

settlement or maturity is not a valid date.

settlement ≥ maturity.

coupon < 0.

yld < 0

frequency is any number other than 1, 2, or 4.

basis < 0 or basis > 4.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query:

Returns the Macauley duration for a bond with the terms specified above.

EFFECT
 10/26/2021 • 2 minutes to read

 Syntax

EFFECT(<nominal_rate>, <npery>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

nominal_rate The nominal interest rate.

npery The number of compounding periods per year.

 Return Value

 Remarks

 Example

DATADATA DESC RIP T IO NDESC RIP T IO N

5.25% Nominal interest rate

4 Number of compounding periods per year

Returns the effective annual interest rate, given the nominal annual interest rate and the number of

compounding periods per year.

The effective annual interest rate.

EFFECT is calculated as follows:

$$\text{EFFECT} = \bigg(1 + \frac{\text{nominal_rate}}{\text{npery}} \bigg)^{\text{npery}} - 1$$

npery is rounded to the nearest integer.

An error is returned if:

nominal_rate ≤ 0.

npery < 1.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query:

EVALUATE
{
 EFFECT(0.0525, 4)
}

[VA L UE][VA L UE]

0.0535426673707584

Returns the effective interest rate using the terms specified above.

FV
 10/26/2021 • 2 minutes to read

 Syntax

FV(<rate>, <nper>, <pmt>[, <pv>[, <type>]])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

rate The interest rate per period.

nper The total number of payment periods in an annuity.

pmt The payment made each period; it cannot change over the
life of the annuity. Typically, pmt contains principal and
interest but no other fees or taxes.

pv (Optional) The present value, or the lump-sum amount that
a series of future payments is worth right now. If pv is
omitted, it is assumed to be BLANK.

type (Optional) The number 0 or 1 which indicates when
payments are due. If type is omitted, it is assumed to be 0.
The accepted values are listed below this table.

SET T Y P E EQ UA L TOSET T Y P E EQ UA L TO IF PAY M EN T S A RE DUEIF PAY M EN T S A RE DUE

0 or omitted At the end of the period

1 At the beginning of the period

 Return Value

 Remarks

Calculates the future value of an investment based on a constant interest rate. You can use FV with either

periodic, constant payments, and/or a single lump sum payment.

The typetype parameter accepts the following values:

Note:Note: For a more complete description of the arguments in FV and for more information on annuity functions,

see the PV function.

The future value of an investment.

Make sure that you are consistent about the units you use for specifying rate and nper. If you make

monthly payments on a four-year loan at 12 percent annual interest, use 0.12/12 for rate and 4*12 for

nper. If you make annual payments on the same loan, use 0.12 for rate and 4 for nper.

 Example

DATADATA DESC RIP T IO NDESC RIP T IO N

6% Annual interest rate

10 Number of payments

-200 Amount of the payment

-500 Present value

1 Payment is due at the beginning of the period (0 indicates
payment is due at end of period)

EVALUATE
{
 FV(0.06/12, 10, -200, -500, 1)
}

[VA L UE][VA L UE]

2581.40337406012

For all the arguments, cash you pay out, such as deposits to savings, is represented by negative numbers;

cash you receive, such as dividend checks, is represented by positive numbers.

type is rounded to the nearest integer.

An error is returned if:

nper < 1

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query:

Returns the future value of an investment using the terms specified above.

INTRATE
 10/26/2021 • 2 minutes to read

 Syntax

INTRATE(<settlement>, <maturity>, <investment>, <redemption>[, <basis>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

settlement The security's settlement date. The security settlement date
is the date after the issue date when the security is traded to
the buyer.

maturity The security's maturity date. The maturity date is the date
when the security expires.

investment The amount invested in the security.

redemption The amount to be received at maturity.

basis (Optional) The type of day count basis to use. If basis is
omitted, it is assumed to be 0. The accepted values are listed
below this table.

B A SISB A SIS DAY C O UN T B A SISDAY C O UN T B A SIS

0 or omitted US (NASD) 30/360

1 Actual/actual

2 Actual/360

3 Actual/365

4 European 30/360

 Return Value

 Remarks

Returns the interest rate for a fully invested security.

The basisbasis parameter accepts the following values:

The interest rate.

Dates are stored as sequential serial numbers so they can be used in calculations. In DAX, December 30,

1899 is day 0, and January 1, 2008 is 39448 because it is 39,448 days after December 30, 1899.

 Example

DATADATA DESC RIP T IO NDESC RIP T IO N

2/15/2008 Settlement date

5/15/2008 Maturity date

\$1,000,000 Investment

\$1,014,420 Redemption value

2 Actual/360 basis

EVALUATE
{
 INTRATE(DATE(2008,2,15), DATE(2008,5,15), 1000000, 1014420, 2)
}

The settlement date is the date a buyer purchases a coupon, such as a bond. The maturity date is the date

when a coupon expires. For example, suppose a 30-year bond is issued on January 1, 2008, and is

purchased by a buyer six months later. The issue date would be January 1, 2008, the settlement date

would be July 1, 2008, and the maturity date is January 1, 2038, which is 30 years after the January 1,

2008, issue date.

INTRATE is calculated as follows:

$$\text{INTRATE} = \frac{\text{redemption} - \text{investment}}{\text{investment}} \times \frac{\text{B}}

{\text{DIM}}$$

where:

B = number of days in a year, depending on the year basis.

DIM = number of days from settlement to maturity.

settlement and maturity are truncated to integers.

basis is rounded to the nearest integer.

An error is returned if:

settlement or maturity is not a valid date.

settlement ≥ maturity.

investment ≤ 0.

redemption ≤ 0.

basis < 0 or basis > 4.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query:

Returns the discount rate for a bond using the terms specified above.

[VA L UE][VA L UE]

0.05768

IPMT
 10/26/2021 • 2 minutes to read

 Syntax

IPMT(<rate>, <per>, <nper>, <pv>[, <fv>[, <type>]])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

rate The interest rate per period.

per The period for which you want to find the interest. Must be
between 1 and nper (inclusive).

nper The total number of payment periods in an annuity.

pv The present value, or the lump-sum amount that a series of
future payments is worth right now.

fv (Optional) The future value, or a cash balance you want to
attain after the last payment is made. If fv is omitted, it is
assumed to be BLANK.

type (Optional) The number 0 or 1 which indicates when
payments are due. If type is omitted, it is assumed to be 0.
The accepted values are listed below this table.

SET T Y P E EQ UA L TOSET T Y P E EQ UA L TO IF PAY M EN T S A RE DUEIF PAY M EN T S A RE DUE

0 or omitted At the end of the period

1 At the beginning of the period

 Return Value

 Remarks

Returns the interest payment for a given period for an investment based on periodic, constant payments and a

constant interest rate.

The typetype parameter accepts the following values:

The interest payment for the given period.

Make sure that you are consistent about the units you use for specifying rate and nper. If you make

monthly payments on a four-year loan at 12 percent annual interest, use 0.12/12 for rate and 4*12 for

nper. If you make annual payments on the same loan, use 0.12 for rate and 4 for nper.

 Examples

DATADATA DESC RIP T IO NDESC RIP T IO N

10.00% Annual interest

3 Years of loan

\$8,000 Present value of loan

 Example 1Example 1

EVALUATE
{
 IPMT(0.1/12, 1, 3*12, 8000)
}

[VA L UE][VA L UE]

-66.6666666666667

 Example 2Example 2

EVALUATE
{
 IPMT(0.1, 3, 3, 8000)
}

[VA L UE][VA L UE]

-292.447129909366

For all the arguments, cash you pay out, such as deposits to savings, is represented by negative numbers;

cash you receive, such as dividend checks, is represented by positive numbers.

type is rounded to the nearest integer.

An error is returned if:

per < 1 or per > nper

nper < 1

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query:

Returns the monthly interest due in the first month for a loan with the terms specified above.

The following DAX query:

Returns the yearly interest due in the last year for a loan with the terms specified above, where payments are

made yearly.

ISPMT
 10/26/2021 • 2 minutes to read

 Syntax

ISPMT(<rate>, <per>, <nper>, <pv>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

rate The interest rate for the investment.

per The period for which you want to find the interest. Must be
between 0 and nper-1 (inclusive).

nper The total number of payment periods for the investment.

pv The present value of the investment. For a loan, pv is the
loan amount.

 Return Value

 Remarks

Calculates the interest paid (or received) for the specified period of a loan (or investment) with even principal

payments.

The interest paid (or received) for the specified period.

Make sure that you are consistent about the units you use for specifying rate and nper. If you make

monthly payments on a four-year loan at an annual interest rate of 12 percent, use 0.12/12 for rate and

4*12 for nper. If you make annual payments on the same loan, use 0.12 for rate and 4 for nper.

For all the arguments, the cash you pay out, such as deposits to savings or other withdrawals, is

represented by negative numbers; the cash you receive, such as dividend checks and other deposits, is

represented by positive numbers.

ISPMT counts each period beginning with zero, not one.

Most loans use a repayment schedule with even periodic payments. The IPMT function returns the

interest payment for a given period for this type of loan.

Some loans use a repayment schedule with even principal payments. The ISPMT function returns the

interest payment for a given period for this type of loan.

An error is returned if:

nper = 0.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

 Example

DATADATA DESC RIP T IO NDESC RIP T IO N

\$4,000 Present value

4 Number of periods

10% Rate

P ERIO DP ERIO D P RIN C IPA L PAY M EN TP RIN C IPA L PAY M EN T IN T EREST PAY M EN TIN T EREST PAY M EN T TOTA L PAY M EN TTOTA L PAY M EN T B A L A N C EB A L A N C E

4,000.00

1 1,000.00 400.00 1,400.00 3,000.00

2 1,000.00 300.00 1,300.00 2,000.00

3 1,000.00 200.00 1,200.00 1,000.00

4 1,000.00 100.00 1,100.00 0.00

DEFINE
VAR NumPaymentPeriods = 4
VAR PaymentPeriods = GENERATESERIES(0, NumPaymentPeriods-1)
EVALUATE
ADDCOLUMNS (
 PaymentPeriods,
 "Interest Payment",
 ISPMT(0.1, [Value], NumPaymentPeriods, 4000)
)

[VA L UE][VA L UE] [IN T EREST PAY M EN T][IN T EREST PAY M EN T]

0 -400

1 -300

2 -200

3 -100

To illustrate when to use ISPMT, the amortization table below uses an even-principal repayment schedule with

the terms specified above. The interest charge each period is equal to the rate times the unpaid balance for the

previous period. And the payment each period is equal to the even principal plus the interest for the period.

The following DAX query:

Returns the interest paid during each period, using the even-principal repayment schedule and terms specified

above. The values are negative to indicate that it is interest paid, not received.

MDURATION
 10/26/2021 • 2 minutes to read

 Syntax

MDURATION(<settlement>, <maturity>, <coupon>, <yld>, <frequency>[, <basis>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

settlement The security's settlement date. The security settlement date
is the date after the issue date when the security is traded to
the buyer.

maturity The security's maturity date. The maturity date is the date
when the security expires.

coupon The security's annual coupon rate.

yld The security's annual yield.

frequency The number of coupon payments per year. For annual
payments, frequency = 1; for semiannual, frequency = 2; for
quarterly, frequency = 4.

basis (Optional) The type of day count basis to use. If basis is
omitted, it is assumed to be 0. The accepted values are listed
below this table.

B A SISB A SIS DAY C O UN T B A SISDAY C O UN T B A SIS

0 or omitted US (NASD) 30/360

1 Actual/actual

2 Actual/360

3 Actual/365

4 European 30/360

 Return Value

Returns the modified Macauley duration for a security with an assumed par value of \$100.

The basisbasis parameter accepts the following values:

The modified Macauley duration.

Remarks

 Example

DATADATA DESC RIP T IO NDESC RIP T IO N

1/1/2008 Settlement date

1/1/2016 Maturity date

8% Percent coupon

9% Percent yield

2 Frequency is semiannual (see above)

1 Actual/actual basis (see above)

EVALUATE
{
 MDURATION(DATE(2008,1,1), DATE(2016,1,1), 0.08, 0.09, 2, 1)
}

Dates are stored as sequential serial numbers so they can be used in calculations. In DAX, December 30,

1899 is day 0, and January 1, 2008 is 39448 because it is 39,448 days after December 30, 1899.

The settlement date is the date a buyer purchases a coupon, such as a bond. The maturity date is the date

when a coupon expires. For example, suppose a 30-year bond is issued on January 1, 2008, and is

purchased by a buyer six months later. The issue date would be January 1, 2008, the settlement date

would be July 1, 2008, and the maturity date is January 1, 2038, which is 30 years after the January 1,

2008, issue date.

Modified duration is defined as follows:

$$\text{MDURATION} = \frac{\text{DURATION}}{1 + (\frac{\text{Market yield}}{\text{Coupon payments

per year}})}$$

settlement and maturity are truncated to integers.

frequency, and basis are rounded to the nearest integer.

An error is returned if:

settlement or maturity is not a valid date.

settlement ≥ maturity.

coupon < 0.

yld < 0

frequency is any number other than 1, 2, or 4.

basis < 0 or basis > 4.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query:

Returns the modified Macauley duration of a bond using the terms specified above.

[VA L UE][VA L UE]

5.73566981391884

NOMINAL
 10/26/2021 • 2 minutes to read

 Syntax

NOMINAL(<effect_rate>, <npery>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

effect_rate The effective interest rate.

npery The number of compounding periods per year.

 Return Value

 Remarks

 Example

DATADATA DESC RIP T IO NDESC RIP T IO N

5.3543% Effective interest rate

4 Number of compounding periods per year

Returns the nominal annual interest rate, given the effective rate and the number of compounding periods per

year.

The nominal annual interest rate.

The relationship between NOMINAL and EFFECT is shown in the following equation:

$$\text{EFFECT} = \Big(1 + \frac{\text{nominal_rate}}{\text{npery}} \Big)^{\text{npery}} - 1$$

npery is rounded to the nearest integer.

An error is returned if:

effect_rate ≤ 0.

npery < 1.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query:

EVALUATE
{
 NOMINAL(0.053543, 4)
}

[VA L UE][VA L UE]

0.052500319868356

Returns the nominal interest rate, using the terms specified above.

NPER
 10/26/2021 • 2 minutes to read

 Syntax

NPER(<rate>, <pmt>, <pv>[, <fv>[, <type>]])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

rate The interest rate per period.

pmt The payment made each period; it cannot change over the
life of the annuity. Typically, pmt contains principal and
interest but no other fees or taxes.

pv The present value, or the lump-sum amount that a series of
future payments is worth right now.

fv (Optional) The future value, or a cash balance you want to
attain after the last payment is made. If fv is omitted, it is
assumed to be BLANK.

type (Optional) The number 0 or 1 and indicates when payments
are due. If type is omitted, it is assumed to be 0. The
accepted values are listed below this table.

SET T Y P E EQ UA L TOSET T Y P E EQ UA L TO IF PAY M EN T S A RE DUEIF PAY M EN T S A RE DUE

0 or omitted At the end of the period

1 At the beginning of the period

 Return Value

 Remarks

Returns the number of periods for an investment based on periodic, constant payments and a constant interest

rate.

The typetype parameter accepts the following values:

The number of periods for an investment.

type is rounded to the nearest integer.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

 Example

DATADATA DESC RIP T IO NDESC RIP T IO N

12% Annual interest rate

-100 Payment made each period

-1000 Present value

10000 Future value

1 Payment is due at the beginning of the period (see above)

EVALUATE
{
 NPER(0.12/12, -100, -1000, 10000, 1)
}

[VA L UE][VA L UE]

59.6738656742946

The following DAX query:

Returns the number of periods for the investment described by the terms specified above.

ODDFPRICE
 10/26/2021 • 4 minutes to read

 Syntax

ODDFPRICE(<settlement>, <maturity>, <issue>, <first_coupon>, <rate>, <yld>, <redemption>, <frequency>[,
<basis>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

settlement The security's settlement date. The security settlement date
is the date after the issue date when the security is traded to
the buyer.

maturity The security's maturity date. The maturity date is the date
when the security expires.

issue The security's issue date.

first_coupon The security's first coupon date.

rate The security's interest rate.

yld The security's annual yield.

redemption The security's redemption value per \$100 face value.

frequency The number of coupon payments per year. For annual
payments, frequency = 1; for semiannual, frequency = 2; for
quarterly, frequency = 4.

basis (Optional) The type of day count basis to use. If basis is
omitted, it is assumed to be 0. The accepted values are listed
below this table.

B A SISB A SIS DAY C O UN T B A SISDAY C O UN T B A SIS

0 or omitted US (NASD) 30/360

1 Actual/actual

2 Actual/360

3 Actual/365

Returns the price per \$100 face value of a security having an odd (short or long) first period.

The basisbasis parameter accepts the following values:

4 European 30/360

B A SISB A SIS DAY C O UN T B A SISDAY C O UN T B A SIS

 Return Value

 Remarks

The price per \$100 face value.

Dates are stored as sequential serial numbers so they can be used in calculations. In DAX, December 30,

1899 is day 0, and January 1, 2008 is 39448 because it is 39,448 days after December 30, 1899.

The settlement date is the date a buyer purchases a coupon, such as a bond. The maturity date is the date

when a coupon expires. For example, suppose a 30-year bond is issued on January 1, 2008, and is

purchased by a buyer six months later. The issue date would be January 1, 2008, the settlement date

would be July 1, 2008, and the maturity date would be January 1, 2038, which is 30 years after the

January 1, 2008, issue date.

ODDFPRICE is calculated as follows:

Odd shor t first coupon:Odd shor t first coupon:

$$\text{ODDFPRICE} = \bigg[\frac{\text{redemption}}{(1 + \frac{\text{yld}}{\text{frequency}})^{(N - 1 +

\frac{\text{DSC}}{\text{E}})}} \bigg] + \bigg[\frac{100 \times \frac{\text{rate}}{\text{frequency}} \times

\frac{\text{DFC}}{\text{E}}}{(1 + \frac{\text{yld}}{\text{frequency}})^{(\frac{\text{DSC}}{\text{E}})}} \bigg] +

\bigg[\sum^{N}_{k=2} \frac{100 \times \frac{\text{rate}}{\text{frequency}}}{(1 + \frac{\text{yld}}

{\text{frequency}})^{(k - 1 + \frac{\text{DSC}}{\text{E}})}} \bigg] - \Big[100 \times \frac{\text{rate}}

{\text{frequency}} \times \frac{\text{A}}{\text{E}} \Big] $$

where:

A = number of days from the beginning of the coupon period to the settlement date (accrued

days).

DSC = number of days from the settlement to the next coupon date.

DFC = number of days from the beginning of the odd first coupon to the first coupon date.

E = number of days in the coupon period.

N = number of coupons payable between the settlement date and the redemption date. (If

this number contains a fraction, it is raised to the next whole number.)

Odd long first coupon:Odd long first coupon:

$$\text{ODDFPRICE} = \bigg[\frac{\text{redemption}}{(1 + \frac{\text{yld}}{\text{frequency}})^{(\text{N} +

\text{N}_{q} + \frac{\text{DSC}}{\text{E}})}} \bigg] + \bigg[\frac{100 \times \frac{\text{rate}}

{\text{frequency}} \times \Big[\sum^{\text{NC}}_{i=1} \frac{\text{DC}_{i}}{\text{NL}_{i}} \Big] }{(1 +

\frac{\text{yld}}{\text{frequency}})^{(\text{N}_{q} + \frac{\text{DSC}}{\text{E}})}} \bigg] + \bigg[

\sum^{\text{N}}_{k=1} \frac{100 \times \frac{\text{rate}}{\text{frequency}}}{(1 + \frac{\text{yld}}

{\text{frequency}})^{(k - \text{N}_{q} + \frac{\text{DSC}}{\text{E}})}} \bigg] - \Big[100 \times

\frac{\text{rate}}{\text{frequency}} \times \sum^{\text{NC}}_{i=1} \frac{\text{A}_{i}}{\text{NL}_{i}} \Big]$$

where:

A_{i} = number of days from the beginning of the i^{th}, or last, quasi-coupon period

within odd period.

DC_{i} = number of days from dated date (or issue date) to first quasi-coupon ($i = 1$) or

number of days in quasi-coupon ($i = 2$,..., $i = \text{NC}$).

 Example

DATADATA A RGUM EN T DESC RIP T IO NA RGUM EN T DESC RIP T IO N

11/11/2008 Settlement date

3/1/2021 Maturity date

10/15/2008 Issue date

3/1/2009 First coupon date

7.85% Percent coupon

6.25% Percent yield

\$100.00 Redemptive value

2 Frequency is semiannual

1 Actual/actual basis

DSC = number of days from settlement to next coupon date.

E = number of days in coupon period.

N = number of coupons payable between the first real coupon date and redemption date. (If

this number contains a fraction, it is raised to the next whole number.)

NC = number of quasi-coupon periods that fit in odd period. (If this number contains a

fraction, it is raised to the next whole number.)

NL_{i} = normal length in days of the full i^{th}, or last, quasi-coupon period within odd

period.

N_{q} = number of whole quasi-coupon periods between settlement date and first coupon.

settlement, maturity, issue, and first_coupon are truncated to integers.

basis and frequency are rounded to the nearest integer.

An error is returned if:

settlement, maturity, issue, or first_coupon is not a valid date.

maturity > first_coupon > settlement > issue is not satisfied.

rate < 0.

yld < 0.

redemption ≤ 0.

frequency is any number other than 1, 2, or 4.

basis < 0 or basis > 4.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query:

EVALUATE
{
 ODDFPRICE(DATE(2008,11,11), DATE(2021,3,1), DATE(2008,10,15), DATE(2009,3,1), 0.0785, 0.0625, 100.00, 2,
1)
}

[VA L UE][VA L UE]

113.597717474079

Returns the price per \$100 face value of a security having an odd (short or long) first period, using the terms

specified above.

ODDFYIELD
 10/26/2021 • 2 minutes to read

 Syntax

ODDFYIELD(<settlement>, <maturity>, <issue>, <first_coupon>, <rate>, <pr>, <redemption>, <frequency>[,
<basis>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

settlement The security's settlement date. The security settlement date
is the date after the issue date when the security is traded to
the buyer.

maturity The security's maturity date. The maturity date is the date
when the security expires.

issue The security's issue date.

first_coupon The security's first coupon date.

rate The security's interest rate.

pr The security's price.

redemption The security's redemption value per \$100 face value.

frequency The number of coupon payments per year. For annual
payments, frequency = 1; for semiannual, frequency = 2; for
quarterly, frequency = 4.

basis (Optional) The type of day count basis to use. If basis is
omitted, it is assumed to be 0. The accepted values are listed
below this table.

B A SISB A SIS DAY C O UN T B A SISDAY C O UN T B A SIS

0 or omitted US (NASD) 30/360

1 Actual/actual

2 Actual/360

3 Actual/365

Returns the yield of a security that has an odd (short or long) first period.

The basisbasis parameter accepts the following values:

4 European 30/360

B A SISB A SIS DAY C O UN T B A SISDAY C O UN T B A SIS

 Return Value

 Remarks

 Example

DATADATA A RGUM EN T DESC RIP T IO NA RGUM EN T DESC RIP T IO N

November 11, 2008 Settlement date

March 1, 2021 Maturity date

October 15, 2008 Issue date

March 1, 2009 First coupon date

5.75% Percent coupon

The security's yield.

Dates are stored as sequential serial numbers so they can be used in calculations. In DAX, December 30,

1899 is day 0, and January 1, 2008 is 39448 because it is 39,448 days after December 30, 1899.

The settlement date is the date a buyer purchases a coupon, such as a bond. The maturity date is the date

when a coupon expires. For example, suppose a 30-year bond is issued on January 1, 2008, and is

purchased by a buyer six months later. The issue date would be January 1, 2008, the settlement date

would be July 1, 2008, and the maturity date would be January 1, 2038, which is 30 years after the

January 1, 2008, issue date.

ODDFYIELD is calculated using an iterative method. It uses the Newton method based on the formula

used for the function ODDFPRICE. The yield is changed through 100 iterations until the estimated price

with the given yield is close to the price. See ODDFPRICE for the formula that ODDFYIELD uses.

settlement, maturity, issue, and first_coupon are truncated to integers.

basis and frequency are rounded to the nearest integer.

An error is returned if:

settlement, maturity, issue, or first_coupon is not a valid date.

maturity > first_coupon > settlement > issue is not satisfied.

rate < 0.

pr ≤ 0.

redemption ≤ 0.

frequency is any number other than 1, 2, or 4.

basis < 0 or basis > 4.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

84.50 Price

100 Redemptive value

2 Frequency is semiannual

0 30/360 basis

DATADATA A RGUM EN T DESC RIP T IO NA RGUM EN T DESC RIP T IO N

EVALUATE
{
 ODDFYIELD(DATE(2008,11,11), DATE(2021,3,1), DATE(2008,10,15), DATE(2009,3,1), 0.0575, 84.50, 100, 2, 0)
}

[VA L UE][VA L UE]

0.0772455415972989

The following DAX query:

Returns the yield of a security that has an odd (short or long) first period, using the terms specified above.

ODDLPRICE
 10/26/2021 • 2 minutes to read

 Syntax

ODDLPRICE(<settlement>, <maturity>, <last_interest>, <rate>, <yld>, <redemption>, <frequency>[, <basis>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

settlement The security's settlement date. The security settlement date
is the date after the issue date when the security is traded to
the buyer.

maturity The security's maturity date. The maturity date is the date
when the security expires.

last_interest The security's last coupon date.

rate The security's interest rate.

yld The security's annual yield.

redemption The security's redemption value per \$100 face value.

frequency The number of coupon payments per year. For annual
payments, frequency = 1; for semiannual, frequency = 2; for
quarterly, frequency = 4.

basis (Optional) The type of day count basis to use. If basis is
omitted, it is assumed to be 0. The accepted values are listed
below this table.

B A SISB A SIS DAY C O UN T B A SISDAY C O UN T B A SIS

0 or omitted US (NASD) 30/360

1 Actual/actual

2 Actual/360

3 Actual/365

4 European 30/360

Returns the price per \$100 face value of a security having an odd (short or long) last coupon period.

The basisbasis parameter accepts the following values:

 Return Value

 Remarks

 Example

DATADATA A RGUM EN T DESC RIP T IO NA RGUM EN T DESC RIP T IO N

February 7, 2008 Settlement date

June 15, 2008 Maturity date

October 15, 2007 Last interest date

3.75% Percent coupon

4.05% Percent yield

\$100 Redemptive value

2 Frequency is semiannual

0 30/360 basis

The price per \$100 face value.

Dates are stored as sequential serial numbers so they can be used in calculations. In DAX, December 30,

1899 is day 0, and January 1, 2008 is 39448 because it is 39,448 days after December 30, 1899.

The settlement date is the date a buyer purchases a coupon, such as a bond. The maturity date is the date

when a coupon expires. For example, suppose a 30-year bond is issued on January 1, 2008, and is

purchased by a buyer six months later. The issue date would be January 1, 2008, the settlement date

would be July 1, 2008, and the maturity date would be January 1, 2038, which is 30 years after the

January 1, 2008, issue date.

settlement, maturity, and last_interest are truncated to integers.

basis and frequency are rounded to the nearest integer.

An error is returned if:

settlement, maturity, or last_interest is not a valid date.

maturity > settlement > last_interest is not satisfied.

rate < 0.

yld < 0.

redemption ≤ 0.

frequency is any number other than 1, 2, or 4.

basis < 0 or basis > 4.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query:

EVALUATE
{
 ODDLPRICE(DATE(2008,2,7), DATE(2008,6,15), DATE(2007,10,15), 0.0375, 0.0405, 100, 2, 0)
}

[VA L UE][VA L UE]

99.8782860147213

Returns the price per \$100 face value of a security that has an odd (short or long) last coupon period, using the

terms specified above.

ODDLYIELD
 10/26/2021 • 2 minutes to read

 Syntax

ODDLYIELD(<settlement>, <maturity>, <last_interest>, <rate>, <pr>, <redemption>, <frequency>[, <basis>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

settlement The security's settlement date. The security settlement date
is the date after the issue date when the security is traded to
the buyer.

maturity The security's maturity date. The maturity date is the date
when the security expires.

last_interest The security's last coupon date.

rate The security's interest rate.

pr The security's price.

redemption The security's redemption value per \$100 face value.

frequency The number of coupon payments per year. For annual
payments, frequency = 1; for semiannual, frequency = 2; for
quarterly, frequency = 4.

basis (Optional) The type of day count basis to use. If basis is
omitted, it is assumed to be 0. The accepted values are listed
below this table.

B A SISB A SIS DAY C O UN T B A SISDAY C O UN T B A SIS

0 or omitted US (NASD) 30/360

1 Actual/actual

2 Actual/360

3 Actual/365

4 European 30/360

Returns the yield of a security that has an odd (short or long) last period.

The basisbasis parameter accepts the following values:

 Return Value

 Remarks

 Example

The security's yield.

Dates are stored as sequential serial numbers so they can be used in calculations. In DAX, December 30,

1899 is day 0, and January 1, 2008 is 39448 because it is 39,448 days after December 30, 1899.

The settlement date is the date a buyer purchases a coupon, such as a bond. The maturity date is the date

when a coupon expires. For example, suppose a 30-year bond is issued on January 1, 2008, and is

purchased by a buyer six months later. The issue date would be January 1, 2008, the settlement date

would be July 1, 2008, and the maturity date would be January 1, 2038, which is 30 years after the

January 1, 2008, issue date.

ODDLYIELD is calculated as follows:

$$\text{ODDLYIELD} = \bigg[\frac{(\text{redemption} + ((\sum^{\text{NC}}_{i=1} \frac{\text{DC}_{i}}

{\text{NL}_{i}}) \times \frac{100 \times \text{rate}}{\text{frequency}})) - (\text{par} +

((\sum^{\text{NC}}_{i=1} \frac{\text{A}_{i}}{\text{NL}_{i}}) \times \frac{100 \times \text{rate}}

{\text{frequency}}))}{\text{par} + ((\sum^{\text{NC}}_{i=1} \frac{\text{A}_{i}}{\text{NL}_{i}}) \times \frac{100

\times \text{rate}}{\text{frequency}})} \bigg] \times \bigg[\frac{\text{frequency}}{(\sum^{\text{NC}}_{i=1}

\frac{\text{DSC}_{i}}{\text{NL}_{i}})} \bigg]$$

where:

A_{i} = number of accrued days for the i^{th}, or last, quasi-coupon period within odd

period counting forward from last interest date before redemption.

DC_{i} = number of days counted in the i^{th}, or last, quasi-coupon period as delimited by

the length of the actual coupon period.

NC = number of quasi-coupon periods that fit in odd period; if this number contains a

fraction it will be raised to the next whole number.

NL_{i} = normal length in days of the i^{th}, or last, quasi-coupon period within odd

coupon period.

settlement, maturity, last_interest are truncated to integers.

basis and frequency are rounded to the nearest integer.

An error is returned if:

settlement, maturity, last_interest is not a valid date.

maturity > settlement > last_interest is not satisfied.

rate < 0.

pr ≤ 0.

redemption ≤ 0.

frequency is any number other than 1, 2, or 4.

basis < 0 or basis > 4.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query:

DATADATA A RGUM EN T DESC RIP T IO NA RGUM EN T DESC RIP T IO N

4/20/2008 Settlement date

6/15/2008 Maturity date

12/24/2007 Last interest date

3.75% Percent coupon

\$99.875 Price

\$100 Redemption value

2 Frequency is semiannual

0 30/360 basis

EVALUATE
{
 ODDLYIELD(DATE(2008,4,20), DATE(2008,6,15), DATE(2007,12,24), 0.0375, 99.875, 100, 2, 0)
}

[VA L UE][VA L UE]

0.0451922356291692

Returns the yield of a security that has an odd (short of long) last period, using the terms specified above.

PDURATION
 10/26/2021 • 2 minutes to read

 Syntax

PDURATION(<rate>, <pv>, <fv>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

rate The interest rate per period.

pv The present value of the investment.

fv The desired future value of the investment.

 Return Value

 Remarks

 Example 1

EVALUATE
{
 PDURATION(0.025, 2000, 2200)
}

Returns the number of periods required by an investment to reach a specified value.

The number of periods.

PDURATION uses the following equation:

$$\text{PDURATION} = \frac{log(\text{fv}) - log(\text{pv})}{log(1 + \text{rate})}$$

An error is returned if:

rate ≤ 0.

pv ≤ 0.

fv ≤ 0.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query:

Returns the number of years required for an investment of \$2000, earning 2.5% annually, to reach \$2200.

[VA L UE][VA L UE]

3.85986616262266

 Example 2

EVALUATE
{
 PDURATION(0.025/12, 1000, 1200)
}

[VA L UE][VA L UE]

87.6054764193714

The following DAX query:

Returns the number of months required for an investment of \$1000, earning 2.5% annually, to reach \$1200.

PMT
 10/26/2021 • 2 minutes to read

 Syntax

PMT(<rate>, <nper>, <pv>[, <fv>[, <type>]])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

rate The interest rate for the loan.

nper The total number of payments for the loan.

pv The present value, or the total amount that a series of future
payments is worth now; also known as the principal.

fv (Optional) The future value, or a cash balance you want to
attain after the last payment is made. If fv is omitted, it is
assumed to be BLANK.

type (Optional) The number 0 or 1 which indicates when
payments are due. If type is omitted, it is assumed to be 0.
The accepted values are listed below this table.

SET T Y P E EQ UA L TOSET T Y P E EQ UA L TO IF PAY M EN T S A RE DUEIF PAY M EN T S A RE DUE

0 or omitted At the end of the period

1 At the beginning of the period

 Return Value

 Remarks

Calculates the payment for a loan based on constant payments and a constant interest rate.

The typetype parameter accepts the following values:

Note:Note: For a more complete description of the arguments in PMT, see the PV function.

The amount of a single loan payment.

The payment returned by PMT includes principal and interest but no taxes, reserve payments, or fees

sometimes associated with loans.

Make sure that you are consistent about the units you use for specifying rate and nper. If you make

monthly payments on a four-year loan at an annual interest rate of 12 percent, use 0.12/12 for rate and

4*12 for nper. If you make annual payments on the same loan, use 0.12 for rate and 4 for nper.

 Examples
 Example 1Example 1

DATADATA DESC RIP T IO NDESC RIP T IO N

8% Annual interest rate

10 Number of months of payments

\$10,000 Amount of loan

EVALUATE
{
 PMT(0.08/12, 10, 10000, 0, 1)
}

[VA L UE][VA L UE]

-1030.16432717797

 Example 2Example 2

DATADATA DESC RIP T IO NDESC RIP T IO N

6% Annual interest rate

18 Number of years of payments

\$50,000 Amount of loan

type is rounded to the nearest integer.

An error is returned if:

nper < 1

TipTip: To find the total amount paid over the duration of the loan, multiply the returned PMT value by nper.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-level

security (RLS) rules.

The following DAX query:

Returns the monthly payment amount, paid at the beginning of the month, for a loan with the terms specified

above.

Note:Note: 1030.16432717797 is the payment per period. As a result, the total amount paid over the duration of the

loan is approximately 1030.16 * 10 = \$10,301.60. In other words, approximately \$301.60 of interest is paid.

The following DAX query:

EVALUATE
{
 PMT(0.06/12, 18*12, 0, 50000)
}

[VA L UE][VA L UE]

-129.081160867991

Returns the amount to save each month to have \$50,000 at the end of 18 years, using the terms specified

above.

PPMT
 10/26/2021 • 2 minutes to read

 Syntax

PPMT(<rate>, <per>, <nper>, <pv>[, <fv>[, <type>]])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

rate The interest rate for the loan.

per Specifies the period. Must be between 1 and nper (inclusive).

nper The total number of payment periods in an annuity.

pv The present value — the total amount that a series of future
payments is worth now.

fv (Optional) The future value, or a cash balance you want to
attain after the last payment is made. If fv is omitted, it is
assumed to be BLANK.

type (Optional) The number 0 or 1 which indicates when
payments are due. If type is omitted, it is assumed to be 0.
The accepted values are listed below this table.

SET T Y P E EQ UA L TOSET T Y P E EQ UA L TO IF PAY M EN T S A RE DUEIF PAY M EN T S A RE DUE

0 or omitted At the end of the period

1 At the beginning of the period

 Return Value

 Remarks

Returns the payment on the principal for a given period for an investment based on periodic, constant payments

and a constant interest rate.

The typetype parameter accepts the following values:

Note:Note: For a more complete description of the arguments in PPMT, see the PV function.

The payment on the principal for a given period.

Make sure that you are consistent about the units you use for specifying rate and nper. If you make

monthly payments on a four-year loan at an annual interest rate of 12 percent, use 0.12/12 for rate and

4*12 for nper. If you make annual payments on the same loan, use 0.12 for rate and 4 for nper.

 Example 1

DATADATA A RGUM EN T DESC RIP T IO NA RGUM EN T DESC RIP T IO N

10% Annual interest rate

2 Number of years for the loan

\$2,000.00 Amount of loan

EVALUATE
{
 PPMT(0.1/12, 1, 2*12, 2000.00)
}

[VA L UE][VA L UE]

-75.6231860083663

 Example 2

DATADATA A RGUM EN T DESC RIP T IO NA RGUM EN T DESC RIP T IO N

8% Annual interest rate

10 Number of years for the loan

\$200,000.00 Amount of loan

EVALUATE
{
 PPMT(0.08, 10, 10, 200000.00)
}

type is rounded to the nearest integer.

An error is returned if:

per < 1 or per > nper

nper < 1

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query:

Returns the principal payment made in the first month for a loan with the terms specified above.

The following DAX query:

Returns the principal payment made in the 10th year for a loan with the terms specified above.

[VA L UE][VA L UE]

-27598.0534624214

PRICE
 10/26/2021 • 2 minutes to read

 Syntax

PRICE(<settlement>, <maturity>, <rate>, <yld>, <redemption>, <frequency>[, <basis>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

settlement The security's settlement date. The security settlement date
is the date after the issue date when the security is traded to
the buyer.

maturity The security's maturity date. The maturity date is the date
when the security expires.

rate The security's annual coupon rate.

yld The security's annual yield.

redemption The security's redemption value per \$100 face value.

frequency The number of coupon payments per year. For annual
payments, frequency = 1; for semiannual, frequency = 2; for
quarterly, frequency = 4.

basis (Optional) The type of day count basis to use. If basis is
omitted, it is assumed to be 0. The accepted values are listed
below this table.

B A SISB A SIS DAY C O UN T B A SISDAY C O UN T B A SIS

0 or omitted US (NASD) 30/360

1 Actual/actual

2 Actual/360

3 Actual/365

4 European 30/360

 Return Value

Returns the price per \$100 face value of a security that pays periodic interest.

The basisbasis parameter accepts the following values:

 Remarks

The price per \$100 face value.

Dates are stored as sequential serial numbers so they can be used in calculations. In DAX, December 30,

1899 is day 0, and January 1, 2008 is 39448 because it is 39,448 days after December 30, 1899.

The settlement date is the date a buyer purchases a coupon, such as a bond. The maturity date is the date

when a coupon expires. For example, suppose a 30-year bond is issued on January 1, 2008, and is

purchased by a buyer six months later. The issue date would be January 1, 2008, the settlement date

would be July 1, 2008, and the maturity date would be January 1, 2038, which is 30 years after the

January 1, 2008, issue date.

settlement and maturity are truncated to integers.

basis and frequency are rounded to the nearest integer.

An error is returned if:

settlement or maturity is not a valid date.

settlement ≥ maturity.

rate < 0.

yld < 0.

redemption ≤ 0.

frequency is any number other than 1, 2, or 4.

basis < 0 or basis > 4.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

Impor tant:Impor tant:

When N > 1 (N is the number of coupons payable between the settlement date and redemption

date), PRICEPRICE is calculated as follows:

$$\text{PRICE} = \bigg[\frac{\text{redemption}}{(1 + \frac{\text{yld}}{\text{frequency}})^{(N - 1 +

\frac{\text{DSC}}{\text{E}})})} \bigg] + \bigg[\sum^{N}_{k=1} \frac{100 \times \frac{\text{rate}}

{\text{frequency}}}{(1 + \frac{\text{yld}}{\text{frequency}})^{(k - 1 + \frac{\text{DSC}}{\text{E}})}} \bigg] -

\bigg[100 \times \frac{\text{rate}}{\text{frequency}} \times \frac{\text{A}}{\text{E}} \bigg]$$

When N = 1 (N is the number of coupons payable between the settlement date and redemption

date), PRICEPRICE is calculated as follows:

$$\text{DSR} = \text{E} - \text{A}$$

$$\text{T1} = 100 \times \frac{\text{rate}}{\text{frequency}} + \text{redemption}$$

$$\text{T2} = \frac{\text{yld}}{\text{frequency}} \times \frac{\text{DSR}}{\text{E}} + 1$$

$$\text{T3} = 100 \times \frac{\text{rate}}{\text{frequency}} \times \frac{\text{A}}{\text{E}}$$

$$\text{PRICE} = \frac{\text{T1}}{\text{T2}} - \text{T3}$$

where:

DSC = number of days from settlement to next coupon date.

E = number of days in coupon period in which the settlement date falls.

A = number of days from beginning of coupon period to settlement date.

Example

DATADATA A RGUM EN T DESC RIP T IO NA RGUM EN T DESC RIP T IO N

2/15/2008 Settlement date

11/15/2017 Maturity date

5.75% Percent semiannual coupon

6.50% Percent yield

\$100 Redemption value

2 Frequency is semiannual

0 30/360 basis

EVALUATE
{
 PRICE(DATE(2008,2,15), DATE(2017,11,15), 0.0575, 0.065, 100, 2, 0)
}

[VA L UE][VA L UE]

94.6343616213221

The following DAX query:

Returns the bond price, for a bond using the terms specified above.

PRICEDISC
 10/26/2021 • 2 minutes to read

 Syntax

PRICEDISC(<settlement>, <maturity>, <discount>, <redemption>[, <basis>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

settlement The security's settlement date. The security settlement date
is the date after the issue date when the security is traded to
the buyer.

maturity The security's maturity date. The maturity date is the date
when the security expires.

discount The security's discount rate.

redemption The security's redemption value per \$100 face value.

basis (Optional) The type of day count basis to use. If basis is
omitted, it is assumed to be 0. The accepted values are listed
below this table.

B A SISB A SIS DAY C O UN T B A SISDAY C O UN T B A SIS

0 or omitted US (NASD) 30/360

1 Actual/actual

2 Actual/360

3 Actual/365

4 European 30/360

 Return Value

 Remarks

Returns the price per \$100 face value of a discounted security.

The basisbasis parameter accepts the following values:

The price per \$100 face value.

Dates are stored as sequential serial numbers so they can be used in calculations. In DAX, December 30,

1899 is day 0, and January 1, 2008 is 39448 because it is 39,448 days after December 30, 1899.

 Example

DATADATA A RGUM EN T DESC RIP T IO NA RGUM EN T DESC RIP T IO N

2/16/2008 Settlement date

3/1/2008 Maturity date

5.25% Percent discount rate

\$100 Redemption value

2 Actual/360 basis

EVALUATE
{
 PRICEDISC(DATE(2008,2,16), DATE(2008,3,1), 0.0525, 100, 2)
}

The settlement date is the date a buyer purchases a coupon, such as a bond. The maturity date is the date

when a coupon expires. For example, suppose a 30-year bond is issued on January 1, 2018, and is

purchased by a buyer six months later. The issue date would be January 1, 2018, the settlement date

would be July 1, 2018, and the maturity date would be January 1, 2048, 30 years after the January 1,

2018, issue date.

PRICEDISC is calculated as follows:

$$\text{PRICEDISC} = \text{redemption} - \text{discount} \times \text{redemption} \times

\frac{\text{DSM}}{\text{B}}$$

where:

B = number of days in year, depending on year basis.

DSM = number of days from settlement to maturity.

settlement and maturity are truncated to integers.

basis is rounded to the nearest integer.

An error is returned if:

settlement or maturity is not a valid date.

settlement ≥ maturity.

discount ≤ 0.

redemption ≤ 0.

basis < 0 or basis > 4.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query:

Returns the bond price per \$100 face value, for a bond with the terms specified above.

[VA L UE][VA L UE]

99.7958333333333

PRICEMAT
 10/26/2021 • 2 minutes to read

 Syntax

PRICEMAT(<settlement>, <maturity>, <issue>, <rate>, <yld>[, <basis>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

settlement The security's settlement date. The security settlement date
is the date after the issue date when the security is traded to
the buyer.

maturity The security's maturity date. The maturity date is the date
when the security expires.

issue The security's issue date.

rate The security's interest rate at date of issue.

yld The security's annual yield.

basis (Optional) The type of day count basis to use. If basis is
omitted, it is assumed to be 0. The accepted values are listed
below this table.

B A SISB A SIS DAY C O UN T B A SISDAY C O UN T B A SIS

0 or omitted US (NASD) 30/360

1 Actual/actual

2 Actual/360

3 Actual/365

4 European 30/360

 Return Value

 Remarks

Returns the price per \$100 face value of a security that pays interest at maturity.

The basisbasis parameter accepts the following values:

The price per \$100 face value.

 Example

DATADATA DESC RIP T IO NDESC RIP T IO N

2/15/2008 Settlement date

4/13/2008 Maturity date

11/11/2007 Issue date

6.10% Percent semiannual coupon

6.10% Percent yield

0 30/360 basis

Dates are stored as sequential serial numbers so they can be used in calculations. In DAX, December 30,

1899 is day 0, and January 1, 2008 is 39448 because it is 39,448 days after December 30, 1899.

The settlement date is the date a buyer purchases a coupon, such as a bond. The maturity date is the date

when a coupon expires. For example, suppose a 30-year bond is issued on January 1, 2008, and is

purchased by a buyer six months later. The issue date would be January 1, 2008, the settlement date

would be July 1, 2008, and the maturity date would be January 1, 2038, which is 30 years after the

January 1, 2008, issue date.

PRICEMAT is calculated as follows:

$$\text{PRICEMAT} = \frac{100 + (\frac{\text{DIM}}{\text{B}} \times \text{rate} \times 100)}{1 +

(\frac{\text{DSM}}{\text{B}} \times \text{yld})} - (\frac{\text{A}}{\text{B}} \times \text{rate} \times 100)$$

where:

B = number of days in year, depending on year basis.

DSM = number of days from settlement to maturity.

DIM = number of days from issue to maturity.

A = number of days from issue to settlement.

settlement, maturity, and issue are truncated to integers.

basis is rounded to the nearest integer.

An error is returned if:

settlement, maturity, or issue is not a valid date.

maturity > settlement > issue is not satisfied.

rate < 0.

yld < 0.

basis < 0 or basis > 4.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query:

EVALUATE
{
 PRICEMAT(DATE(2008,2,15), DATE(2008,4,13), DATE(2007,11,11), 0.061, 0.061, 0)
}

[VA L UE][VA L UE]

99.9844988755569

Returns the price per \$100 face value of a security with the terms specified above.

PV
 10/26/2021 • 3 minutes to read

 Syntax

PV(<rate>, <nper>, <pmt>[, <fv>[, <type>]])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

rate The interest rate per period. For example, if you obtain an
automobile loan at a 10 percent annual interest rate and
make monthly payments, your interest rate per month is
0.1/12, or 0.0083. You would enter 0.1/12, or 0.0083, into
the formula as the rate.

nper The total number of payment periods in an annuity. For
example, if you get a four-year car loan and make monthly
payments, your loan has 4*12 (or 48) periods. You would
enter 48 into the formula for nper.

pmt The payment made each period that cannot change over the
life of the annuity. Typically, pmt includes principal and
interest but no other fees or taxes. For example, the monthly
payments on a \$10,000, four-year car loan at 12 percent
are \$263.33. You would enter -263.33 into the formula as
the pmt.

fv (Optional) The future value, or a cash balance you want to
attain after the last payment is made. If fv is omitted, it is
assumed to be BLANK. For example, if you want to save
\$50,000 to pay for a special project in 18 years, then
\$50,000 is the future value. You could then make a
conservative guess at an interest rate and determine how
much you must save each month.

type (Optional) The number 0 or 1 which indicates when
payments are due. If type is omitted, it is assumed to be 0.
The accepted values are listed below this table.

SET T Y P E EQ UA L TOSET T Y P E EQ UA L TO IF PAY M EN T S A RE DUEIF PAY M EN T S A RE DUE

0 or omitted At the end of the period

1 At the beginning of the period

Calculates the present value of a loan or an investment, based on a constant interest rate. You can use PV with

either periodic, constant payments (such as a mortgage or other loan), and/or a future value that's your

investment goal.

The typetype parameter accepts the following values:

 Return Value

 Remarks

 Example

DATADATA DESC RIP T IO NDESC RIP T IO N

\$500.00 Money paid out of an insurance annuity at the end of every
month.

The present value of a loan or investment.

Make sure that you are consistent about the units you use for specifying rate and nper. If you make

monthly payments on a four-year loan at 12 percent annual interest, use 0.12/12 for rate and 4*12 for

nper. If you make annual payments on the same loan, use 0.12 for rate and 4 for nper.

The following functions apply to annuities:

CUMIPMT

CUMPRINC

FV

IPMT

PMT

PPMT

PV

RATE

XIRR

XNPV

An annuity is a series of constant cash payments made over a continuous period. For example, a car loan

or a mortgage is an annuity. For more information, see the description for each annuity function.

In annuity functions, cash you pay out, such as a deposit to savings, is represented by a negative number;

cash you receive, such as a dividend check, is represented by a positive number. For example, a \$1,000

deposit to the bank would be represented by the argument -1000 if you are the depositor and by the

argument 1000 if you are the bank.

One financial argument is solved in terms of the others.

If rate is not 0, then:

$$\text{pv} \times (1 + \text{rate})^{\text{nper}} + \text{pmt}(1 + \text{rate} \times \text{type})

\times \bigg(\frac{(1 + \text{rate})^{\text{nper}} - 1}{\text{rate}} \bigg) + \text{fv} = 0$$

If rate is 0, then:

$$(\text{pmt} \times \text{nper}) + \text{pv} + \text{fv} = 0$$

type is rounded to the nearest integer.

An error is returned if:

nper < 1

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

8% Interest rate earned on the money paid out.

20 Years the money will be paid out.

DATADATA DESC RIP T IO NDESC RIP T IO N

EVALUATE
{
 PV(0.08/12, 12*20, 500.00, 0, 0)
}

[VA L UE][VA L UE]

-59777.1458511878

The following DAX query:

Returns the present value of an annuity using the terms specified above.

RATE
 10/26/2021 • 2 minutes to read

 Syntax

RATE(<nper>, <pmt>, <pv>[, <fv>[, <type>[, <guess>]]])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

nper The total number of payment periods in an annuity.

pmt The payment made each period and cannot change over the
life of the annuity. Typically, pmt includes principal and
interest but no other fees or taxes.

pv The present value — the total amount that a series of future
payments is worth now.

fv (Optional) The future value, or a cash balance you want to
attain after the last payment is made. If fv is omitted, it is
assumed to be 0 (the future value of a loan, for example, is
0).

type (Optional) The number 0 or 1 which indicates when
payments are due. If type is omitted, it is assumed to be 0.
The accepted values are listed below this table.

guess (Optional) Your guess for what the rate will be.
- If omitted, it is assumed to be 10%.
- If RATE does not converge, try different values for guess.
RATE usually converges if guess is between 0 and 1.

SET T Y P E EQ UA L TOSET T Y P E EQ UA L TO IF PAY M EN T S A RE DUEIF PAY M EN T S A RE DUE

0 or omitted At the end of the period

1 At the beginning of the period

 Return Value

Returns the interest rate per period of an annuity. RATE is calculated by iteration and can have zero or more

solutions. If the successive results of RATE do not converge to within 0.0000001 after 20 iterations, an error is

returned.

The typetype parameter accepts the following values:

The interest rate per period.

Remarks

 Examples

DATADATA DESC RIP T IO NDESC RIP T IO N

4 Years of the loan

-200 Monthly payment

8000 Amount of the loan

 Example 1Example 1

EVALUATE
{
 RATE(4*12, -200, 8000)
}

[VA L UE][VA L UE]

0.00770147248820137

 Example 2Example 2

EVALUATE
{
 RATE(4*12, -200, 8000) * 12
}

[VA L UE][VA L UE]

0.0924176698584164

Make sure that you are consistent about the units you use for specifying guess and nper. If you make

monthly payments on a four-year loan at 12 percent annual interest, use 0.12/12 for guess and 4*12 for

nper. If you make annual payments on the same loan, use 0.12 for guess and 4 for nper.

type is rounded to the nearest integer.

An error is returned if:

nper ≤ 0.

RATE does not converge to within 0.0000001 after 20 iterations

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query:

Returns the monthly rate of the loan using the terms specified above.

The following DAX query:

Returns the annual rate of the loan using the terms specified above.

RECEIVED
 10/26/2021 • 2 minutes to read

 Syntax

RECEIVED(<settlement>, <maturity>, <investment>, <discount>[, <basis>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

settlement The security's settlement date. The security settlement date
is the date after the issue date when the security is traded to
the buyer.

maturity The security's maturity date. The maturity date is the date
when the security expires.

investment The amount invested in the security.

discount The security's discount rate.

basis (Optional) The type of day count basis to use. If basis is
omitted, it is assumed to be 0. The accepted values are listed
below this table.

B A SISB A SIS DAY C O UN T B A SISDAY C O UN T B A SIS

0 or omitted US (NASD) 30/360

1 Actual/actual

2 Actual/360

3 Actual/365

4 European 30/360

 Return Value

 Remarks

Returns the amount received at maturity for a fully invested security.

The basisbasis parameter accepts the following values:

The amount received at maturity.

Dates are stored as sequential serial numbers so they can be used in calculations. In DAX, December 30,

1899 is day 0, and January 1, 2008 is 39448 because it is 39,448 days after December 30, 1899.

 Example

DATADATA DESC RIP T IO NDESC RIP T IO N

15-Feb-08 Settlement (issue) date

15-May-08 Maturity date

\$1,000,000.00 Investment

5.75% Percent discount rate

2 Actual/360 basis

EVALUATE
{
 RECEIVED(DATE(2008,2,15), DATE(2008,5,15), 1000000.00, 0.0575, 2)
}

[VA L UE][VA L UE]

1014584.6544071

The settlement date is the date a buyer purchases a coupon, such as a bond. The maturity date is the date

when a coupon expires. For example, suppose a 30-year bond is issued on January 1, 2008, and is

purchased by a buyer six months later. The issue date would be January 1, 2008, the settlement date

would be July 1, 2008, and the maturity date would be January 1, 2038, which is 30 years after the

January 1, 2008, issue date.

RECEIVED is calculated as follows:

$$\text{RECEIVED} = \frac{\text{investment}}{1 - (\text{discount} \times \frac{\text{DIM}}{\text{B}})}$$

where:

B = number of days in a year, depending on the year basis.

DIM = number of days from issue to maturity.

settlement and maturity are truncated to integers.

basis is rounded to the nearest integer.

An error is returned if:

settlement or maturity is not a valid date.

settlement ≥ maturity.

investment ≤ 0.

discount ≤ 0.

basis < 0 or basis > 4.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query:

Returns the total amount to be received at maturity, for a bond with the terms specified above.

RRI
 10/26/2021 • 2 minutes to read

 Syntax

RRI(<nper>, <pv>, <fv>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

nper The number of periods for the investment.

pv The present value of the investment.

fv The future value of the investment.

 Return Value

 Remarks

 Example

DATADATA DESC RIP T IO NDESC RIP T IO N

\$10,000 Present value

\$21,000 Future value

4 Years invested

Returns an equivalent interest rate for the growth of an investment.

The equivalent interest rate.

RRI returns the interest rate given nper (the number of periods), pv (present value), and

fv (future value), calculated by using the following equation:

$$\bigg(\frac{\text{fv}}{\text{pv}} \bigg)^{(\frac{1}{\text{}nper})} - 1$$

An error is returned if:

nper ≤ 0.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query:

EVALUATE
{
 RRI(4*12, 10000, 21000)
}

[VA L UE][VA L UE]

0.0155771057566627

Returns an equivalent interest rate for the growth of an investment with the terms specified above.

SLN
 10/26/2021 • 2 minutes to read

 Syntax

SLN(<cost>, <salvage>, <life>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

cost The initial cost of the asset.

salvage The value at the end of the depreciation (sometimes called
the salvage value of the asset).

life The number of periods over which the asset is depreciated
(sometimes called the useful life of the asset).

 Return Value

 Remarks

 Example

DATADATA DESC RIP T IO NDESC RIP T IO N

\$30,000 Cost

\$7,500 Salvage value

10 Years of useful life

EVALUATE
{
 SLN(30000, 7500, 10)
}

Returns the straight-line depreciation of an asset for one period.

The straight-line depreciation for one period.

An error is returned if:

life = 0.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query:

[VA L UE][VA L UE]

2250

Returns the yearly depreciation allowance using the terms specified above.

SYD
 10/26/2021 • 2 minutes to read

 Syntax

SYD(<cost>, <salvage>, <life>, <per>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

cost The initial cost of the asset.

salvage The value at the end of the depreciation (sometimes called
the salvage value of the asset).

life The number of periods over which the asset is depreciated
(sometimes called the useful life of the asset).

per The period. Must use the same units as life. Must be
between 1 and life (inclusive).

 Return Value

 Remarks

 Examples

DATADATA DESC RIP T IO NDESC RIP T IO N

\$30,000.00 Initial cost

\$7,500.00 Salvage value

Returns the sum-of-years' digits depreciation of an asset for a specified period.

The sum-of-years' digits depreciation for the specified period.

SYD is calculated as follows:

$$\text{SYD} = \frac{(\text{cost} - \text{salvage}) \times (\text{life} - \text{per} + 1) \times 2}{(\text{life})

\times (\text{life} + 1)}$$

An error is returned if:

life < 1.

per < 1 or per > life.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

10 Lifespan in years

DATADATA DESC RIP T IO NDESC RIP T IO N

 Example 1Example 1

EVALUATE
{
 SYD(30000.00, 7500.00, 10, 1)
}

[VA L UE][VA L UE]

4090.90909090909

 Example 2Example 2

EVALUATE
{
 SYD(30000.00, 7500.00, 10, 10)
}

[VA L UE][VA L UE]

409.090909090909

The following DAX query:

Returns an asset's sum-of-years' digits depreciation allowance for the first year, given the terms specified above.

The following DAX query:

Returns an asset's sum-of-years' digits depreciation allowance for the tenth (final) year, given the terms specified

above.

TBILLEQ
 10/26/2021 • 2 minutes to read

 Syntax

TBILLEQ(<settlement>, <maturity>, <discount>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

settlement The Treasury bill's settlement date. The security settlement
date is the date after the issue date when the Treasury bill is
traded to the buyer.

maturity The Treasury bill's maturity date. The maturity date is the
date when the Treasury bill expires.

discount The Treasury bill's discount rate.

 Return Value

 Remarks

 Example

Returns the bond-equivalent yield for a Treasury bill.

The Treasury Bill's bond-equivalent yield.

Dates are stored as sequential serial numbers so they can be used in calculations. In DAX, December 30,

1899 is day 0, and January 1, 2008 is 39448 because it is 39,448 days after December 30, 1899.

TBILLEQ is calculated as:

$$\text{TBILLEQ} = \frac{365 \times \text{discount}}{360 - (\text{discount} \times \text{DSM})}$$

where:

DSM is the number of days between settlement and maturity computed according to the 360

days per year basis.

settlement and maturity are truncated to integers.

An error is returned if:

settlement or maturity is not a valid date.

settlement ≥ maturity or maturity is more than one year after settlement.

discount ≤ 0.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

DATADATA DESC RIP T IO NDESC RIP T IO N

3/31/2008 Settlement date

6/1/2008 Maturity date

9.14% Percent discount rate

EVALUATE
{
 TBILLEQ(DATE(2008,3,31), DATE(2008,6,1), 0.0914)
}

[VA L UE][VA L UE]

0.094151493565943

The following DAX query:

Returns the bond-equivalent yield for a Treasury bill using the terms specified above.

TBILLPRICE
 10/26/2021 • 2 minutes to read

 Syntax

TBILLPRICE(<settlement>, <maturity>, <discount>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

settlement The Treasury bill's settlement date. The security settlement
date is the date after the issue date when the Treasury bill is
traded to the buyer.

maturity The Treasury bill's maturity date. The maturity date is the
date when the Treasury bill expires.

discount The Treasury bill's discount rate.

 Return Value

 Remarks

 Example

Returns the price per \$100 face value for a Treasury bill.

The Treasury Bill's price per \$100 face value.

Dates are stored as sequential serial numbers so they can be used in calculations. In DAX, December 30,

1899 is day 0, and January 1, 2008 is 39448 because it is 39,448 days after December 30, 1899.

TBILLPRICE is calculated as follows:

$$\text{TBILLPRICE} = 100 \times (1 - \frac{\text{discount} \times \text{DSM}}{360})$$

where:

DSM = number of days from settlement to maturity, excluding any maturity date that is more

than one calendar year after the settlement date.

settlement and maturity are truncated to integers.

An error is returned if:

settlement or maturity is not a valid date.

settlement ≥ maturity or maturity is more than one year after settlement.

discount ≤ 0.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

DATADATA DESC RIP T IO NDESC RIP T IO N

3/31/2008 Settlement date

6/1/2008 Maturity date

9.0% Percent discount rate

EVALUATE
{
 TBILLPRICE(DATE(2008,3,31), DATE(2008,6,1), 0.09)
}

[VA L UE][VA L UE]

98.45

The following DAX query:

Returns the Treasury Bill's price per \$100 face value, given the terms specified above.

TBILLYIELD
 10/26/2021 • 2 minutes to read

 Syntax

TBILLYIELD(<settlement>, <maturity>, <pr>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

settlement The Treasury bill's settlement date. The security settlement
date is the date after the issue date when the Treasury bill is
traded to the buyer.

maturity The Treasury bill's maturity date. The maturity date is the
date when the Treasury bill expires.

pr The Treasury bill's price per \$100 face value.

 Return Value

 Remarks

 Example

Returns the yield for a Treasury bill.

The Treasury bill's yield.

Dates are stored as sequential serial numbers so they can be used in calculations. In DAX, December 30,

1899 is day 0, and January 1, 2008 is 39448 because it is 39,448 days after December 30, 1899.

TBILLYIELD is calculated as follows:

$$\text{TBILLYIELD} = \frac{100 - \text{pr}}{\text{pr}} \times \frac{360}{\text{DSM}}$$

where:

DSM = number of days from settlement to maturity, excluding any maturity date that is more

than one calendar year after the settlement date.

settlement and maturity are truncated to integers.

An error is returned if:

settlement or maturity is not a valid date.

settlement ≥ maturity or maturity is more than one year after settlement.

pr ≤ 0.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

DATADATA DESC RIP T IO NDESC RIP T IO N

3/31/2008 Settlement date

6/1/2008 Maturity date

\$98.45 Price per \$100 face value

EVALUATE
{
 TBILLYIELD(DATE(2008,3,31), DATE(2008,6,1), 98.45)
}

[VA L UE][VA L UE]

0.0914169629253426

The following DAX query:

Returns the yield of a Treasury bill using the terms specified above.

VDB
 10/26/2021 • 2 minutes to read

 Syntax

VDB(<cost>, <salvage>, <life>, <start_period>, <end_period>[, <factor>[, <no_switch>]])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

cost The initial cost of the asset.

salvage The value at the end of the depreciation (sometimes called
the salvage value of the asset). This value can be 0.

life The number of periods over which the asset is being
depreciated (sometimes called the useful life of the asset).

start_period The starting period for which you want to calculate the
depreciation. Start_period must use the same units as life.
Must be between 1 and life (inclusive).

end_period The ending period for which you want to calculate the
depreciation. End_period must use the same units as life.
Must be between start_period and life (inclusive).

factor (Optional) The rate at which the balance declines. If factor is
omitted, it is assumed to be 2 (the double-declining balance
method). Change factor if you do not want to use the
double-declining balance method. For a description of the
double-declining balance method, see DDB.

no_switch (Optional) A logical value specifying whether to switch to
straight-line depreciation when depreciation is greater than
the declining balance calculation. If omitted, it is assumed to
be FALSE.
- If no_switch evaluates to TRUE, VDB does not switch to
straight-line depreciation, even when the depreciation is
greater than the declining balance calculation.
- If no_switch evaluates to FALSE or is omitted, VDB switches
to straight-line depreciation when depreciation is greater
than the declining balance calculation.

 Return Value

Returns the depreciation of an asset for any period you specify, including partial periods, using the double-

declining balance method or some other method you specify. VDB stands for variable declining balance.

The depreciation over the specified period.

Remarks

 Examples

DATADATA DESC RIP T IO NDESC RIP T IO N

2400 Initial cost

300 Salvage value

10 Lifetime in years

 Example 1Example 1

EVALUATE
{
 VDB(2400, 300, 10*365, 0, 1)
}

[VA L UE][VA L UE]

1.31506849315068

 Example 2Example 2

EVALUATE
{
 VDB(2400, 300, 10*12, 6, 18, 3)
}

[VA L UE][VA L UE]

540.185558199698

An error is returned if:

cost < 0.

salvage < 0.

life < 1.

start_period < 1 or start_period > end_period.

end_period < start_period or end_period > life.

factor < 0.

no_switch does not evaluate to either TRUE or FALSE.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query:

Returns an asset's first day's depreciation using a factor of 2.

The following DAX query:

Returns an asset's depreciation between the 6th month and the 18th month. This calculation uses a

factor of 3.

 Example 3Example 3

EVALUATE
{
 VDB(2400, 300, 10, 0, 0.875, 1.5)
}

[VA L UE][VA L UE]

315

The following DAX query:

Returns an asset's depreciation in the first fiscal year that you own it, assuming that tax laws limit you to 150%

depreciation of the declining balance. The asset is purchased in the middle of the first quarter of the fiscal year.

XIRR
 10/26/2021 • 2 minutes to read

 Syntax

XIRR(<table>, <values>, <dates>, [, <guess>[, <alternateResult>]])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

table A table for which the values and dates expressions should be
calculated.

values An expression that returns the cash flow value for each row
of the table.

dates An expression that returns the cash flow date for each row
of the table.

guess (Optional) An initial guess for the internal rate of return. If
omitted, the default guess of 0.1 is used.

alternateResult (Optional) A value returned in place of an error when a
solution cannot be determined.

 Return value

 Remarks

Returns the internal rate of return for a schedule of cash flows that is not necessarily periodic.

Internal rate of return for the given inputs. If the calculation fails to return a valid result, an error or value

specified as alternateResult is returned.

The value is calculated as the rate that satisfies the following function:

$$\sum^{N}_{ j=1} \frac{P_{ j}}{(1 + \text{rate})^{\frac{d_{ j} - d_{1}}{365}}}$$

Where:

$P_{ j}$ is the j^{th} payment

$d_{ j}$ is the j^{th} payment date

d_{1} is the first payment date

The series of cash flow values must contain at least one positive number and one negative number.

Avoid using ISERROR or IFERROR functions to capture an error returned by XIRR. If some inputs to the

function may result in a no solution error, providing an alternateResult parameter is the most reliable and

highest performing way to handle the error.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

 Example

= XIRR(CashFlows, [Payment], [Date])

DAT EDAT E PAY M EN TPAY M EN T

1/1/2014 -10000

3/1/2014 2750

10/30/2014 4250

2/15/2015 3250

4/1/2015 2750

level security (RLS) rules.

The following formula calculates the internal rate of return of the CashFlows table:

Rate of return = 37.49%

XNPV
 10/26/2021 • 2 minutes to read

 Syntax

XNPV(<table>, <values>, <dates>, <rate>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

table A table for which the values and dates expressions should be
calculated.

values An expression that returns the cash flow value for each row
of the table.

dates An expression that returns the cash flow date for each row
of the table.

rate The discount rate to apply to the cash flow for each row of
the table.

 Return value

 Remarks

 Example

Returns the present value for a schedule of cash flows that is not necessarily periodic.

Net present value.

The value is calculated as the following summation:

$$\sum^{N}_{ j=1} \frac{P_{ j}}{(1 + \text{rate})^{\frac{d_{ j} - d_{1}}{365}}}$$

Where:

$P_{ j}$ is the j^{th} payment

$d_{ j}$ is the j^{th} payment date

d_{1} is the first payment date

The series of cash flow values must contain at least one positive number and one negative number.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following calculates the present value of the CashFlows table:

= XNPV(CashFlows, [Payment], [Date], 0.09)

DAT EDAT E PAY M EN TPAY M EN T

1/1/2014 -10000

3/1/2014 2750

10/30/2014 4250

2/15/2015 3250

4/1/2015 2750

Present value = 2086.65

YIELD
 10/26/2021 • 2 minutes to read

 Syntax

YIELD(<settlement>, <maturity>, <rate>, <pr>, <redemption>, <frequency>[, <basis>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

settlement The security's settlement date. The security settlement date
is the date after the issue date when the security is traded to
the buyer.

maturity The security's maturity date. The maturity date is the date
when the security expires.

rate The security's annual coupon rate.

pr The security's price per \$100 face value.

redemption The security's redemption value per \$100 face value.

frequency The number of coupon payments per year. For annual
payments, frequency = 1; for semiannual, frequency = 2; for
quarterly, frequency = 4.

basis (Optional) The type of day count basis to use. If basis is
omitted, it is assumed to be 0. The accepted values are listed
below this table.

B A SISB A SIS DAY C O UN T B A SISDAY C O UN T B A SIS

0 or omitted US (NASD) 30/360

1 Actual/actual

2 Actual/360

3 Actual/365

4 European 30/360

 Return Value

Returns the yield on a security that pays periodic interest. Use YIELD to calculate bond yield.

The basisbasis parameter accepts the following values:

 Remarks

 Example

DATADATA DESC RIP T IO NDESC RIP T IO N

15-Feb-08 Settlement date

15-Nov-16 Maturity date

The yield on the security.

Dates are stored as sequential serial numbers so they can be used in calculations. In DAX, December 30,

1899 is day 0, and January 1, 2008 is 39448 because it is 39,448 days after December 30, 1899.

The settlement date is the date a buyer purchases a coupon, such as a bond. The maturity date is the date

when a coupon expires. For example, suppose a 30-year bond is issued on January 1, 2008, and is

purchased by a buyer six months later. The issue date would be January 1, 2008, the settlement date

would be July 1, 2008, and the maturity date would be January 1, 2038, which is 30 years after the

January 1, 2008, issue date.

If there is one coupon period or less until redemption, YIELD is calculated as follows:

$$\text{YIELD} = \frac{(\frac{\text{redemption}}{100} + \frac{\text{rate}}{\text{frequency}}) -

(\frac{\text{par}}{100} + (\frac{\text{A}}{\text{E}} \times \frac{\text{rate}}{\text{frequency}}))}

{\frac{\text{par}}{100} + (\frac{\text{A}}{\text{E}} \times \frac{\text{rate}}{\text{frequency}})} \times

\frac{\text{frequency} \times \text{E}}{\text{DSR}}$$

where:

A = number of days from the beginning of the coupon period to the settlement date (accrued

days).

DSR = number of days from the settlement date to the redemption date.

E = number of days in the coupon period.

If there is more than one coupon period until redemption, YIELD is calculated through a hundred

iterations. The resolution uses the Newton method, based on the formula used for the function PRICE.

The yield is changed until the estimated price given the yield is close to price.

settlement and maturity are truncated to integers.

frequency, and basis are rounded to the nearest integer.

An error is returned if:

settlement or maturity is not a valid date.

settlement ≥ maturity.

rate < 0.

pr ≤ 0.

redemption ≤ 0.

frequency is any number other than 1, 2, or 4.

basis < 0 or basis > 4.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

5.75% Percent coupon

95.04287 Price

\$100 Redemption value

2 Frequency is semiannual (see above)

0 30/360 basis (see above)

DATADATA DESC RIP T IO NDESC RIP T IO N

EVALUATE
{
 YIELD(DATE(2008,2,15), DATE(2016,11,15), 0.0575, 95.04287, 100, 2,0)
}

[VA L UE][VA L UE]

0.0650000068807314

The following DAX query:

Returns the yield on a bond with the terms specified above.

YIELDDISC
 10/26/2021 • 2 minutes to read

 Syntax

YIELDDISC(<settlement>, <maturity>, <pr>, <redemption>[, <basis>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

settlement The security's settlement date. The security settlement date
is the date after the issue date when the security is traded to
the buyer.

maturity The security's maturity date. The maturity date is the date
when the security expires.

pr The security's price per \$100 face value.

redemption The security's redemption value per \$100 face value.

basis (Optional) The type of day count basis to use. If basis is
omitted, it is assumed to be 0. The accepted values are listed
below this table.

B A SISB A SIS DAY C O UN T B A SISDAY C O UN T B A SIS

0 or omitted US (NASD) 30/360

1 Actual/actual

2 Actual/360

3 Actual/365

4 European 30/360

 Return Value

 Remarks

Returns the annual yield for a discounted security.

The basisbasis parameter accepts the following values:

The annual yield.

Dates are stored as sequential serial numbers so they can be used in calculations. In DAX, December 30,

1899 is day 0, and January 1, 2008 is 39448 because it is 39,448 days after December 30, 1899.

 Example

DATADATA --

16-Feb-08 Settlement date

1-Mar-08 Maturity date

99.795 Price

\$100 Redemption value

2 Actual/360 basis

EVALUATE
{
 YIELDDISC(DATE(2008,2,16), DATE(2008,3,1), 99.795, 100, 2)
}

[VA L UE][VA L UE]

0.0528225719868583

The settlement date is the date a buyer purchases a coupon, such as a bond. The maturity date is the date

when a coupon expires. For example, suppose a 30-year bond is issued on January 1, 2008, and is

purchased by a buyer six months later. The issue date would be January 1, 2008, the settlement date

would be July 1, 2008, and the maturity date would be January 1, 2038, which is 30 years after the

January 1, 2008, issue date.

settlement and maturity are truncated to integers.

basis is rounded to the nearest integer.

An error is returned if:

settlement or maturity is not a valid date.

settlement ≥ maturity.

pr ≤ 0.

redemption ≤ 0.

basis < 0 or basis > 4.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query:

Returns the security's annual yield, given the terms specified above.

YIELDMAT
 10/26/2021 • 2 minutes to read

 Syntax

YIELDMAT(<settlement>, <maturity>, <issue>, <rate>, <pr>[, <basis>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

settlement The security's settlement date. The security settlement date
is the date after the issue date when the security is traded to
the buyer.

maturity The security's maturity date. The maturity date is the date
when the security expires.

issue The security's issue date.

rate The security's interest rate at date of issue.

pr The security's price per \$100 face value.

basis (Optional) The type of day count basis to use. If basis is
omitted, it is assumed to be 0. The accepted values are listed
below this table.

B A SISB A SIS DAY C O UN T B A SISDAY C O UN T B A SIS

0 or omitted US (NASD) 30/360

1 Actual/actual

2 Actual/360

3 Actual/365

4 European 30/360

 Return Value

 Remarks

Returns the annual yield of a security that pays interest at maturity.

The basisbasis parameter accepts the following values:

The annual yield.

 Example

DATADATA DESC RIP T IO NDESC RIP T IO N

15-Mar-08 Settlement date

3-Nov-08 Maturity date

8-Nov-07 Issue date

6.25% Percent semiannual coupon

100.0123 Price

0 30/360 basis (see above)

EVALUATE
{
 YIELDMAT(DATE(2008,3,15), DATE(2008,11,3), DATE(2007,11,8), 0.0625, 100.0123, 0)
}

[VA L UE][VA L UE]

0.0609543336915387

Dates are stored as sequential serial numbers so they can be used in calculations. In DAX, December 30,

1899 is day 0, and January 1, 2008 is 39448 because it is 39,448 days after December 30, 1899.

The settlement date is the date a buyer purchases a coupon, such as a bond. The maturity date is the date

when a coupon expires. For example, suppose a 30-year bond is issued on January 1, 2008, and is

purchased by a buyer six months later. The issue date would be January 1, 2008, the settlement date

would be July 1, 2008, and the maturity date would be January 1, 2038, which is 30 years after the

January 1, 2008, issue date.

settlement, maturity, and issue are truncated to integers.

basis is rounded to the nearest integer.

An error is returned if:

settlement, maturity, or issue is not a valid date.

maturity > settlement > issue is not satisfied.

rate < 0.

pr ≤ 0.

basis < 0 or basis > 4.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query:

Returns the yield for a security using the terms specified above.

Information functions
 10/26/2021 • 2 minutes to read

 In this category

F UN C T IO NF UN C T IO N DESC RIP T IO NDESC RIP T IO N

CONTAINS Returns true if values for all referred columns exist, or are
contained, in those columns; otherwise, the function returns
false.

CONTAINSROW Returns TRUE if a row of values exists or contained in a table,
otherwise returns FALSE.

CONTAINSSTRING Returns TRUE or FALSE indicating whether one string
contains another string.

CONTAINSSTRINGEXACT Returns TRUE or FALSE indicating whether one string
contains another string.

CUSTOMDATA Returns the content of the CustomData property in the
connection string.

HASONEFILTER Returns TRUE when the number of directly filtered values on
columnName is one; otherwise returns FALSE.

HASONEVALUE Returns TRUE when the context for columnName has been
filtered down to one distinct value only. Otherwise is FALSE.

ISAFTER A boolean function that emulates the behavior of a Start At
clause and returns true for a row that meets all of the
condition parameters.

ISBLANK Checks whether a value is blank, and returns TRUE or FALSE.

ISCROSSFILTERED Returns TRUE when columnName or another column in the
same or related table is being filtered.

ISEMPTY Checks if a table is empty.

ISERROR Checks whether a value is an error, and returns TRUE or
FALSE.

ISEVEN Returns TRUE if number is even, or FALSE if number is odd.

ISFILTERED Returns TRUE when columnName is being filtered directly.

DAX information functions look at the cell or row that is provided as an argument and tells you whether the

value matches the expected type. For example, the ISERROR function returns TRUE if the value that you

reference contains an error.

ISINSCOPE Returns true when the specified column is the level in a
hierarchy of levels.

ISLOGICAL Checks whether a value is a logical value, (TRUE or FALSE),
and returns TRUE or FALSE.

ISNONTEXT Checks if a value is not text (blank cells are not text), and
returns TRUE or FALSE.

ISNUMBER Checks whether a value is a number, and returns TRUE or
FALSE.

ISODD Returns TRUE if number is odd, or FALSE if number is even.

ISONORAFTER A boolean function that emulates the behavior of a Start At
clause and returns true for a row that meets all of the
condition parameters.

ISSELECTEDMEASURE Used by expressions for calculation items to determine the
measure that is in context is one of those specified in a list of
measures.

ISSUBTOTAL Creates another column in a SUMMARIZE expression that
returns True if the row contains subtotal values for the
column given as argument, otherwise returns False.

ISTEXT Checks if a value is text, and returns TRUE or FALSE.

NONVISUAL Marks a value filter in a SUMMARIZECOLUMNS expression
as non-visual.

SELECTEDMEASURE Used by expressions for calculation items to reference the
measure that is in context.

SELECTEDMEASUREFORMATSTRING Used by expressions for calculation items to retrieve the
format string of the measure that is in context.

SELECTEDMEASURENAME Used by expressions for calculation items to determine the
measure that is in context by name.

USERNAME Returns the domain name and username from the
credentials given to the system at connection time.

USEROBJECTID Returns the current user's Object ID or SID.

USERPRINCIPALNAME Returns the user principal name.

F UN C T IO NF UN C T IO N DESC RIP T IO NDESC RIP T IO N

CONTAINS
 10/26/2021 • 2 minutes to read

 Syntax

CONTAINS(<table>, <columnName>, <value>[, <columnName>, <value>]…)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

table Any DAX expression that returns a table of data.

columnName The name of an existing column, using standard DAX syntax.
It cannot be an expression.

value Any DAX expression that returns a single scalar value, that is
to be sought in columnName. The expression is to be
evaluated exactly once and before it is passed to the
argument list.

 Return value

 Remarks

 Example

= CONTAINS(InternetSales, [ProductKey], 214, [CustomerKey], 11185)

Returns true if values for all referred columns exist, or are contained, in those columns; otherwise, the function

returns false.

A value of TRUETRUE if each specified value can be found in the corresponding columnName, or are contained, in

those columns; otherwise, the function returns FALSEFALSE.

The arguments columnName and value must come in pairs; otherwise an error is returned.

columnName must belong to the specified table, or to a table that is related to table.

If columnName refers to a column in a related table then it must be fully qualified; otherwise, an error is

returned.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following example creates a measure that tells you whether there were any Internet sales of product 214

and to customer 11185 at the same time.

CONTAINSROW function
 10/26/2021 • 2 minutes to read

 Syntax

CONTAINSROW(<tableExpr>, <scalarExpr>[, <scalarExpr>, …])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

scalarExprN Any valid DAX expression that returns a scalar value.

tableExpr Any valid DAX expression that returns a table of data.

 Return value

 Remarks

 Example 1

EVALUATE FILTER(ALL(DimProduct[Color]), [Color] IN { "Red", "Yellow", "Blue" })
ORDER BY [Color]

EVALUATE FILTER(ALL(DimProduct[Color]), ([Color]) IN { "Red", "Yellow", "Blue" })
ORDER BY [Color]

Returns TRUE if a row of values exists or contained in a table, otherwise returns FALSE.

TRUE or FALSE.

<scalarExpr> IN <tableExpr>
(<scalarExpr1>, <scalarExpr2>, …) IN <tableExpr>

Except syntax, the ININ operator and CONTAINSROW function are functionally equivalent.

The number of scalarExprN must match the number of columns in tableExpr.

NOT IN is not an operator in DAX. To perform the logical negation of the IN operator, put NOT in front

of the entire expression. For example, NOT [Color] IN { "Red", "Yellow", "Blue" }.

Unlike the = operator, the IN operator and the CONTAINSROW function perform strict comparison. For

example, the BLANK value does not match 0.

The following equivalent DAX queries:

and

and

EVALUATE FILTER(ALL(DimProduct[Color]), CONTAINSROW({ "Red", "Yellow", "Blue" }, [Color]))
ORDER BY [Color]

DIM P RO DUC T [C O LO R]DIM P RO DUC T [C O LO R]

Blue

Red

Yellow

 Example 2

EVALUATE FILTER(SUMMARIZE(DimProduct, [Color], [Size]), ([Color], [Size]) IN { ("Black", "L") })

EVALUATE FILTER(SUMMARIZE(DimProduct, [Color], [Size]), CONTAINSROW({ ("Black", "L") }, [Color], [Size]))

DIM P RO DUC T [C O LO R]DIM P RO DUC T [C O LO R] DIM P RO DUC T [SIZ E]DIM P RO DUC T [SIZ E]

Black L

 Example 3Example 3

EVALUATE FILTER(ALL(DimProduct[Color]), NOT [Color] IN { "Red", "Yellow", "Blue" })
ORDER BY [Color]

EVALUATE FILTER(ALL(DimProduct[Color]), NOT CONTAINSROW({ "Red", "Yellow", "Blue" }, [Color]))
ORDER BY [Color]

DIM P RO DUC T [C O LO R]DIM P RO DUC T [C O LO R]

Black

Grey

Multi

Return the following table with a single column:

The following equivalent DAX queries:

and

Return:

The following equivalent DAX queries:

and

Return the following table with a single column:

NA

Silver

Silver\Black

White

DIM P RO DUC T [C O LO R]DIM P RO DUC T [C O LO R]

CONTAINSSTRING
 10/26/2021 • 2 minutes to read

 Syntax

CONTAINSSTRING(<within_text>, <find_text>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

within_text The text in which you want to search for find_text.

find_text The text you want to find.

 Return value

 Remarks

 Example

EVALUATE
 ROW(
 "Case 1", CONTAINSSTRING("abcd", "bc"),
 "Case 2", CONTAINSSTRING("abcd", "BC"),
 "Case 3", CONTAINSSTRING("abcd", "a*d"),
 "Case 4", CONTAINSSTRING("abcd", "ef")
)

[C A SE 1][C A SE 1] [C A SE 2][C A SE 2] [C A SE 3][C A SE 3] [C A SE 4][C A SE 4]

TRUE TRUE TRUE FALSE

Returns TRUE or FALSE indicating whether one string contains another string.

TRUE if find_text is a substring of within_text; otherwise FALSE.

CONTAINSSTRING is not case-sensitive.

You can use ? and * wildcard characters. Use ~ to escape wildcard characters.

DAX query

Returns

CONTAINSSTRINGEXACT
 10/26/2021 • 2 minutes to read

 Syntax

CONTAINSSTRINGEXACT(<within_text>, <find_text>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

within_text The text in which you want to search for find_text.

find_text The text you want to find.

 Return value

 Remarks

 Example

EVALUATE
 ROW(
 "Case 1", CONTAINSSTRINGEXACT("abcd", "bc"),
 "Case 2", CONTAINSSTRINGEXACT("abcd", "BC"),
 "Case 3", CONTAINSSTRINGEXACT("abcd", "a*d"),
 "Case 4", CONTAINSSTRINGEXACT("abcd", "ef")
)

[C A SE 1][C A SE 1] [C A SE 2][C A SE 2] [C A SE 3][C A SE 3] [C A SE 4][C A SE 4]

TRUE FALSE FALSE FALSE

Returns TRUE or FALSE indicating whether one string contains another string.

TRUE if find_text is a substring of within_text; otherwise FALSE.

CONTAINSSTRINGEXACT is case-sensitive.

DAX query

Returns

CUSTOMDATA
 10/26/2021 • 2 minutes to read

 Syntax

CUSTOMDATA()

 Return value

 Remarks

 Example

= IF(CUSTOMDATA()="OK", "Correct Custom data in connection string", "No custom data in connection string
property or unexpected value")

Returns the content of the CustomDataCustomData property in the connection string.

The content of the CustomDataCustomData property in the connection string.

Blank, if CustomDataCustomData property was not defined at connection time.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-level

security (RLS) rules.

The following DAX formula verifies if the CustomData property was set to "OK""OK".

HASONEFILTER
 10/26/2021 • 2 minutes to read

 Syntax

HASONEFILTER(<columnName>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

columnName The name of an existing column, using standard DAX syntax.
It cannot be an expression.

 Return value

 Remarks

 Example

= IF(HASONEFILTER(ResellerSales_USD[ProductKey]),FILTERS(ResellerSales_USD[ProductKey]),BLANK())

Returns TRUETRUE when the number of directly filtered values on columnName is one; otherwise returns FALSEFALSE.

TRUETRUE when the number of directly filtered values on columnName is one; otherwise returns FALSEFALSE.

This function is similar to HASONEVALUE() with the difference that HASONEVALUE() works based on

cross-filters while HASONEFILTER() works by a direct filter.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following example shows how to use HASONEFILTER() to return the filter for

ResellerSales_USD[ProductKey]) if there is one filter, or to return BLANK if there are no filters or more than one

filter on ResellerSales_USD[ProductKey]).

HASONEVALUE
 10/26/2021 • 2 minutes to read

 Syntax

HASONEVALUE(<columnName>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

columnName The name of an existing column, using standard DAX syntax.
It cannot be an expression.

 Return value

 Remarks

 Example

=
IF(HASONEVALUE(DateTime[CalendarYear]),SUM(ResellerSales_USD[SalesAmount_USD])/CALCULATE(SUM(ResellerSales_U
SD[SalesAmount_USD]),DateTime[CalendarYear]=2007),BLANK())

Returns TRUETRUE when the context for columnName has been filtered down to one distinct value only. Otherwise is

FALSEFALSE.

TRUETRUE when the context for columnName has been filtered down to one distinct value only. Otherwise is FALSEFALSE.

An equivalent expression for HASONEVALUE() is COUNTROWS(VALUES(<columnName>)) = 1 .

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following measure formula verifies if the context is being sliced by one value in order to estimate a

percentage against a predefined scenario; in this case you want to compare Reseller Sales against sales in 2007,

then you need to know if the context is filtered by single years. Also, if the comparison is meaningless you want

to return BLANK.

ISAFTER
 10/26/2021 • 2 minutes to read

 Syntax

ISAFTER(<scalar_expression>, <scalar_expression>[, sort_order [, <scalar_expression>, <scalar_expression>[,
sort_order]]…)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

scalar expression Any expression that returns a scalar value like a column
reference or integer or string value. Typically the first
parameter is a column reference and the second parameter
is a scalar value.

sort order (optional) The order in which the column is sorted. Can be
ascending (ASC) or descending (DEC). By default the sort
order is ascending.

 Return value

 Remarks

 Example

C O UN T RYC O UN T RY STAT ESTAT E C O UN TC O UN T TOTA LTOTA L

IND JK 20 800

IND MH 25 1000

A boolean function that emulates the behavior of a 'Start At' clause and returns true for a row that meets all of

the condition parameters.

Based on the sort order, the first parameter is compared with the second parameter. If the sort order is

ascending, the comparison to be done is first parameter greater than the second parameter. If the sort order is

descending, the comparison to be done is second parameter less than the first parameter.

True or false.

This function is similar to ISONORAFTER. The difference is ISAFTER returns true for values sorted strictly after

the filter values, where ISONORAFTER returns true for values sorted on or after the filter values.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-level

security (RLS) rules.

Table name: 'Info'

IND WB 10 900

USA CA 5 500

USA WA 10 900

C O UN T RYC O UN T RY STAT ESTAT E C O UN TC O UN T TOTA LTOTA L

FILTER (
 Info,
 ISAFTER (
 Info[Country], "IND", ASC,
 Info[State], "MH", ASC)
)

C O UN T RYC O UN T RY STAT ESTAT E C O UN TC O UN T TOTA LTOTA L

IND WB 10 900

USA CA 5 500

USA WA 10 900

 See also

The following expression:

Returns:

ISONORAFTER

ISBLANK
 10/26/2021 • 2 minutes to read

 Syntax

ISBLANK(<value>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

value The value or expression you want to test.

 Return value

 Remarks

 Example

//Sales to Previous Year Ratio

= IF(ISBLANK('CalculatedMeasures'[PreviousYearTotalSales])
 , BLANK()
 , ('CalculatedMeasures'[Total Sales]-'CalculatedMeasures'[PreviousYearTotalSales])
 /'CalculatedMeasures'[PreviousYearTotalSales])

RO W L A B EL SRO W L A B EL S TOTA L SA L ESTOTA L SA L ES
TOTA L SA L ES P REVIO USTOTA L SA L ES P REVIO US
Y EA RY EA R

SA L ES TO P REVIO US Y EA RSA L ES TO P REVIO US Y EA R
RAT IORAT IO

2005 $10,209,985.08

2006 $28,553,348.43 $10,209,985.08 179.66%

2007 $39,248,847.52 $28,553,348.43 37.46%

2008 $24,542,444.68 $39,248,847.52 -37.47%

Grand Total $102,554,625.71

Checks whether a value is blank, and returns TRUE or FALSE.

A Boolean value of TRUE if the value is blank; otherwise FALSE.

To learn more about best practices when working with BLANKS, see Avoid converting BLANKs to values in DAX.

This formula computes the increase or decrease ratio in sales compared to the previous year. The example uses

the IF function to check the value for the previous year's sales in order to avoid a divide by zero error.

Result,

 See also
Information functions

ISCROSSFILTERED
 10/26/2021 • 2 minutes to read

 Syntax

ISCROSSFILTERED(<columnName>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

columnName The name of an existing column, using standard DAX syntax.
It cannot be an expression.

 Return value

 Remarks

 See also

Returns TRUE when columnName or another column in the same or related table is being filtered.

TRUETRUE when columnName or another column in the same or related table is being filtered. Otherwise returns

FALSEFALSE.

A column is said to be cross-filtered when a filter applied to another column in the same table or in a

related table affects columnName by filtering it. A column is said to be filtered directly when the filter or

filters apply over the column.

The related function ISFILTERED function returns TRUE when columnName is filtered directly.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

ISFILTERED function

FILTERS function

HASONEFILTER function

HASONEVALUE function

ISEMPTY
 10/26/2021 • 2 minutes to read

 Syntax

ISEMPTY(<table_expression>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

table_expression A table reference or a DAX expression that returns a table.

 Return value

 Remarks

 Example

C O UN T RYC O UN T RY STAT ESTAT E C O UN T YC O UN T Y TOTA LTOTA L

IND JK 20 800

IND MH 25 1000

IND WB 10 900

USA CA 5 500

USA WA 10 900

EVALUATE
ROW("Any countries with count > 25?", NOT(ISEMPTY(FILTER(Info, [County]>25))))

Checks if a table is empty.

True if the table is empty (has no rows), if else, False.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-level

security (RLS) rules.

For the below table named 'Info':

Return value: FALSEFALSE

ISERROR
 10/26/2021 • 2 minutes to read

 Syntax

ISERROR(<value>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

value The value you want to test.

 Return value

 Remarks

 Example

= IF(ISERROR(
 SUM('ResellerSales_USD'[SalesAmount_USD])
 /SUM('InternetSales_USD'[SalesAmount_USD])
)
 , BLANK()
 , SUM('ResellerSales_USD'[SalesAmount_USD])
 /SUM('InternetSales_USD'[SalesAmount_USD])
)

 See also

Checks whether a value is an error, and returns TRUE or FALSE.

A Boolean value of TRUE if the value is an error ; otherwise FALSE.

For best practices when using ISERROR, see Appropriate use of error functions.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following example calculates the ratio of total Internet sales to total reseller sales. The ISERROR function is

used to check for errors, such as division by zero. If there is an error a blank is returned, otherwise the ratio is

returned.

Information functions

IFERROR function

IF function

ISEVEN
 10/26/2021 • 2 minutes to read

 Syntax

ISEVEN(number)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number The value to test. If number is not an integer, it is truncated.

 Return value

 Remarks

Returns TRUE if number is even, or FALSE if number is odd.

Returns TRUE if number is even, or FALSE if number is odd.

If number is nonnumeric, ISEVEN returns the #VALUE! error value.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

ISFILTERED
 10/26/2021 • 2 minutes to read

 Syntax

ISFILTERED(<columnName>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

columnName The name of an existing column, using standard DAX syntax.
It cannot be an expression.

 Return value

 Remarks

 See also

Returns TRUE when columnName is being filtered directly. If there is no filter on the column or if the filtering

happens because a different column in the same table or in a related table is being filtered then the function

returns FALSEFALSE.

TRUE when columnName is being filtered directly.

columnName is said to be filtered directly when the filter or filters apply over the column; a column is

said to be cross-filtered when a filter applied to another column in the same table or in a related table

affects columnName the column by filtering it as well.

The related function ISCROSSFILTERED returns TRUE when columnName or another column in the same

or related table is being filtered.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

ISCROSSFILTERED function

FILTERS function

HASONEFILTER function

HASONEVALUE function

ISINSCOPE
 10/26/2021 • 2 minutes to read

 Syntax

ISINSCOPE(<columnName>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

columnName The name of an existing column, using standard DAX syntax.
It cannot be an expression.

 Return value

 Remarks

 Example

Returns true when the specified column is the level in a hierarchy of levels.

TRUE when the specified column is the level in a hierarchy of levels.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-level

security (RLS) rules.

DEFINE
MEASURE FactInternetSales[% of Parent] =
 SWITCH (TRUE(),
 ISINSCOPE(DimProduct[Subcategory]),
 DIVIDE(
 SUM(FactInternetSales[Sales Amount]),
 CALCULATE(
 SUM(FactInternetSales[Sales Amount]),
 ALLSELECTED(DimProduct[Subcategory]))
),
 ISINSCOPE(DimProduct[Category]),
 DIVIDE(
 SUM(FactInternetSales[Sales Amount]),
 CALCULATE(
 SUM(FactInternetSales[Sales Amount]),
 ALLSELECTED(DimProduct[Category]))
),
 1
) * 100
EVALUATE
 SUMMARIZECOLUMNS
 (
 ROLLUPADDISSUBTOTAL
 (
 DimProduct[Category], "Category Subtotal",
 DimProduct[Subcategory], "Subcategory Subtotal"
),
 TREATAS(
 {"Bike Racks", "Bike Stands", "Mountain Bikes", "Road Bikes", "Touring Bikes"},
 DimProduct[Subcategory]),
 "Sales", SUM(FactInternetSales[Sales Amount]),
 "% of Parent", [% of Parent]
)
 ORDER BY
 [Category Subtotal] DESC, [Category],
 [Subcategory Subtotal] DESC, [Subcategory]

DIM P RO DUC T [CDIM P RO DUC T [C
AT EGO RY]AT EGO RY]

DIM P RO DUC T [SDIM P RO DUC T [S
UB C AT EGO RY]UB C AT EGO RY]

[C AT EGO RY[C AT EGO RY
SUBTOTA L]SUBTOTA L]

[SUB C AT EGO RY[SUB C AT EGO RY
SUBTOTA L]SUBTOTA L] [SA L ES][SA L ES] [% O F PA REN T][% O F PA REN T]

TRUE TRUE 28,397,095.65 100.00

Accessories FALSE TRUE 78,951.00 0.28

Accessories Bike Racks FALSE FALSE 39,360.00 49.85

Accessories Bike Stands FALSE FALSE 39,591.00 50.15

Bikes FALSE TRUE 28,318,144.65 99.72

Bikes Mountain Bikes FALSE FALSE 9,952,759.56 35.15

Bikes Road Bikes FALSE FALSE 14,520,584.04 51.28

Bikes Touring Bikes FALSE FALSE 3,844,801.05 13.58

 See also

Returns,

SUMMARIZECOLUMNS function

CALCULATE function

ISLOGICAL
 10/26/2021 • 2 minutes to read

 Syntax

ISLOGICAL(<value>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

value The value that you want to test.

 Return value

 Remarks

 Example

//RETURNS: Is Boolean type or Logical
= IF(ISLOGICAL(true), "Is Boolean type or Logical", "Is different type")

//RETURNS: Is Boolean type or Logical
= IF(ISLOGICAL(false), "Is Boolean type or Logical", "Is different type")

//RETURNS: Is different type
= IF(ISLOGICAL(25), "Is Boolean type or Logical", "Is different type")

 See also

Checks whether a value is a logical value, (TRUE or FALSE), and returns TRUE or FALSE.

TRUE if the value is a logical value; FALSE if any value other than TRUE OR FALSE.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-level

security (RLS) rules.

The following three samples show the behavior of ISLOGICAL.

Information functions

ISNONTEXT
 10/26/2021 • 2 minutes to read

 Syntax

ISNONTEXT(<value>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

value The value you want to check.

 Return value

 Remarks

 Example

//RETURNS: Is Non-Text
= IF(ISNONTEXT(1), "Is Non-Text", "Is Text")

//RETURNS: Is Non-Text
= IF(ISNONTEXT(BLANK()), "Is Non-Text", "Is Text")

//RETURNS: Is Text
= IF(ISNONTEXT(""), "Is Non-Text", "Is Text")

 See also

Checks if a value is not text (blank cells are not text), and returns TRUE or FALSE.

TRUE if the value is not text or blank; FALSE if the value is text.

An empty string is considered text.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following examples show the behavior of the ISNONTEXT function.

Information functions

ISNUMBER
 10/26/2021 • 2 minutes to read

 Syntax

ISNUMBER(<value>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

value The value you want to test.

 Return value

 Remarks

 Example

//RETURNS: Is number
= IF(ISNUMBER(0), "Is number", "Is Not number")

//RETURNS: Is number
= IF(ISNUMBER(3.1E-1),"Is number", "Is Not number")

//RETURNS: Is Not number
= IF(ISNUMBER("123"), "Is number", "Is Not number")

 See also

Checks whether a value is a number, and returns TRUE or FALSE.

TRUE if the value is numeric; otherwise FALSE.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-level

security (RLS) rules.

The following three samples show the behavior of ISNUMBER.

Information functions

ISODD
 10/26/2021 • 2 minutes to read

 Syntax

ISODD(number)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number The value to test. If number is not an integer, it is truncated.

 Return value

 Remarks

Returns TRUE if number is odd, or FALSE if number is even.

Returns TRUE if number is odd, or FALSE if number is even.

If number is nonnumeric, ISODD returns the #VALUE! error value.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

ISONORAFTER
 10/26/2021 • 2 minutes to read

 Syntax

ISONORAFTER(<scalar_expression>, <scalar_expression>[, sort_order [, <scalar_expression>,
<scalar_expression>[, sort_order]]…)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

scalar expression Any expression that returns a scalar value like a column
reference or integer or string value. Typically the first
parameter is a column reference and the second parameter
is a scalar value.

sort order (optional) The order in which the column is sorted. Can be
ascending (ASC) or descending (DEC). By default the sort
order is ascending.

 Return value

 Remarks

 Example

C O UN T RYC O UN T RY STAT ESTAT E C O UN TC O UN T TOTA LTOTA L

IND JK 20 800

IND MH 25 1000

A boolean function that emulates the behavior of a Start At clause and returns true for a row that meets all of

the condition parameters.

Based on the sort order, the first parameter is compared with the second parameter. If the sort order is

ascending, the comparison to be done is first parameter greater than the second parameter. If the sort order is

descending, the comparison to be done is second parameter less than the first parameter.

True or false.

This function is similar to ISAFTER. The difference is ISONORAFTER returns true for values sorted on or after the

filter values, where ISAFTER returns true for values sorted strictly after the filter values.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-level

security (RLS) rules.

Table name: 'Info'

IND WB 10 900

USA CA 5 500

USA WA 10 900

C O UN T RYC O UN T RY STAT ESTAT E C O UN TC O UN T TOTA LTOTA L

FILTER (
 Info,
 ISONORAFTER (
 Info[Country], "IND", ASC,
 Info[State], "MH", ASC)
)

C O UN T RYC O UN T RY STAT ESTAT E C O UN TC O UN T TOTA LTOTA L

IND MH 25 1000

IND WB 10 900

USA CA 5 500

USA WA 10 900

 See also

The following expression:

Returns:

ISAFTER

ISSELECTEDMEASURE
 10/26/2021 • 2 minutes to read

 Syntax

ISSELECTEDMEASURE(M1, M2, ...)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

M1, M2, ... A list of measures.

 Return value

 Remarks

 Example

IF (
 ISSELECTEDMEASURE ([Expense Ratio 1], [Expense Ratio 2]),
 SELECTEDMEASURE (),
 DIVIDE (SELECTEDMEASURE (), COUNTROWS (DimDate))
)

 See also

Used by expressions for calculation items to determine the measure that is in context is one of those specified in

a list of measures.

A Boolean indicating whether the measure that is currently in context is one of those specified in the list of

parameters.

Can only be referenced in the expression for a calculation item.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following calculation item expression checks if the current measure is one of those specified in the list of

parameters. If the measures are renamed, formula fixup will reflect the name changes in the expression.

SELECTEDMEASURE

SELECTEDMEASURENAME

ISSUBTOTAL
 10/26/2021 • 2 minutes to read

 Syntax

ISSUBTOTAL(<columnName>)

SUMMARIZE(<table>, <groupBy_columnName>[, <groupBy_columnName>]…[, ROLLUP(<groupBy_columnName>[,<
groupBy_columnName>…])][, <name>, {<expression>|ISSUBTOTAL(<columnName>)}]…)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

columnName The name of any column in table of the SUMMARIZE
function or any column in a related table to table.

 Return value

 Remarks

 Example

Creates another column in a SUMMARIZE expression that returns True if the row contains subtotal values for the

column given as argument, otherwise returns False.

With SUMMARIZE,

A True value if the row contains a subtotal value for the column given as argument, otherwise returns False.

This function can only be used in the expression of a SUMMARIZE function.

This function must be preceded by the name of the Boolean column.

See SUMMARIZE.

ISTEXT
 10/26/2021 • 2 minutes to read

 Syntax

ISTEXT(<value>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

value The value you want to check.

 Return value

 Remarks

 Example

//RETURNS: Is Text
= IF(ISTEXT("text"), "Is Text", "Is Non-Text")

//RETURNS: Is Text
= IF(ISTEXT(""), "Is Text", "Is Non-Text")

//RETURNS: Is Non-Text
= IF(ISTEXT(1), "Is Text", "Is Non-Text")

//RETURNS: Is Non-Text
= IF(ISTEXT(BLANK()), "Is Text", "Is Non-Text")

 See also

Checks if a value is text, and returns TRUE or FALSE.

TRUE if the value is text; otherwise FALSE.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-level

security (RLS) rules.

The following examples show the behavior of the ISTEXT function.

Information functions

NONVISUAL
 10/26/2021 • 2 minutes to read

 Syntax

NONVISUAL(<expression>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

expression Any DAX expression that returns a single value (not a table).

 Return value

 Remarks

 Example

Marks a value filter in a SUMMARIZECOLUMNS expression as non-visual. This function can only be used within

a SUMMARIZECOLUMNS expression.

A table of values.

Marks a value filter in SUMMARIZECOLUMNS as not affecting measure values, but only applying to

group-by columns.

This function can only be used within a SUMMARIZECOLUMNS expression. It's used as either a filterTable

argument of the SUMMARIZECOLUMNS function or a groupLevelFilter argument of the

ROLLUPADDISSUBTOTAL or ROLLUPISSUBTOTAL function.

See SUMMARIZECOLUMNS.

SELECTEDMEASURE
 10/26/2021 • 2 minutes to read

 Syntax

SELECTEDMEASURE()

 ParametersParameters

 Return value

 Remarks

 Example

CALCULATE(SELECTEDMEASURE(), DATESYTD(DimDate[Date]))

 See also

Used by expressions for calculation items to reference the measure that is in context.

None

A reference to the measure that is currently in context when the calculation item is evaluated.

Can only be referenced in the expression for a calculation item.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following calculation item expression calculates the year-to-date for whatever the measure is in context.

SELECTEDMEASURENAME

ISSELECTEDMEASURE

SELECTEDMEASUREFORMATSTRING
 10/26/2021 • 2 minutes to read

 Syntax

SELECTEDMEASUREFORMATSTRING()

 ParametersParameters

 Return value

 Remarks

 Example

SELECTEDVALUE(DimCurrency[FormatString], SELECTEDMEASUREFORMATSTRING())

 See also

Used by expressions for calculation items to retrieve the format string of the measure that is in context.

None

A string holding the format string of the measure that is currently in context when the calculation item is

evaluated.

This function can only be referenced in expressions for calculation items in calculation groups. It is

designed to be used by the Format Str ing ExpressionFormat Str ing Expression property of calculation items.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following expression is evaluated by the Format String Expression property for a calculation item. If there is

a single currency in filter context, the format string is retrieved from the DimCurrency[FormatString] column;

otherwise the format string of the measure in context is used.

SELECTEDMEASURE

ISSELECTEDMEASURE

SELECTEDMEASURENAME
 10/26/2021 • 2 minutes to read

 Syntax

SELECTEDMEASURENAME()

 ParametersParameters

 Return value

 Remarks

 Example

IF (
 SELECTEDMEASURENAME = "Expense Ratio",
 SELECTEDMEASURE (),
 DIVIDE (SELECTEDMEASURE (), COUNTROWS (DimDate))
)

 See also

Used by expressions for calculation items to determine the measure that is in context by name.

None

A string value holding the name of the measure that is currently in context when the calculation item is

evaluated.

Can only be referenced in the expression for a calculation item.

This function is often used for debugging purposes when authoring calculation groups.

The following calculation item expression checks if the current measure is Expense Ratio and conditionally

applies calculation logic. Since the check is based on a string comparison, it is not subject to formula fixup and

will not benefit from object renaming being automatically reflected. For a similar comparison that would benefit

from formula fixup, please see the ISSLECTEDMEASURE function instead.

SELECTEDMEASURE

ISSELECTEDMEASURE

USERNAME
 10/26/2021 • 2 minutes to read

 Syntax

USERNAME()

 ParametersParameters

 Return value

 Example

= IF(CONTAINS(UsersTable,UsersTable[login], USERNAME()), "Allowed", BLANK())

Returns the domain name and username from the credentials given to the system at connection time.

This expression has no parameters.

The username from the credentials given to the system at connection time

The following formula verifies if the user login is part of the UsersTable.

USEROBJECTID
 10/26/2021 • 2 minutes to read

 Syntax

USEROBJECTID()

 ParametersParameters

 Return value

Returns the current user's Object ID from Azure AD or security identifier (SID).

This expression has no parameters.

The current user's Object ID from Azure AD for Power BI or Azure Analysis Services models or SID for SQL

Server Analysis Services models.

USERPRINCIPALNAME
 10/26/2021 • 2 minutes to read

 Syntax

USERPRINCIPALNAME()

 ParametersParameters

 Return value

Returns the user principal name.

This expression has no parameters.

The userprincipalname at connection time.

Logical functions
 10/26/2021 • 2 minutes to read

 In this category

F UN C T IO NF UN C T IO N DESC RIP T IO NDESC RIP T IO N

AND Checks whether both arguments are TRUE, and returns
TRUE if both arguments are TRUE.

BITAND Returns a bitwise 'AND' of two numbers.

BITLSHIFT Returns a number shifted left by the specified number of
bits.

BITOR Returns a bitwise 'OR' of two numbers.

BITRSHIFT Returns a number shifted right by the specified number of
bits.

BITXOR Returns a bitwise 'XOR' of two numbers.

COALESCE Returns the first expression that does not evaluate to
BLANK.

FALSE Returns the logical value FALSE.

IF Checks a condition, and returns one value when TRUE,
otherwise it returns a second value.

IF.EAGER Checks a condition, and returns one value when TRUE,
otherwise it returns a second value. Uses an eager execution
plan which always executes the branch expressions
regardless of the condition expression.

IFERROR Evaluates an expression and returns a specified value if the
expression returns an error

NOT Changes FALSE to TRUE, or TRUE to FALSE.

OR Checks whether one of the arguments is TRUE to return
TRUE.

SWITCH Evaluates an expression against a list of values and returns
one of multiple possible result expressions.

TRUE Returns the logical value TRUE.

Logical functions act upon an expression to return information about the values or sets in the expression. For

example, you can use the IF function to check the result of an expression and create conditional results.

AND
 10/26/2021 • 2 minutes to read

 Syntax

AND(<logical1>,<logical2>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

logical_1, logical_2 The logical values you want to test.

 Return value

 Remarks

 Example 1

= IF(AND(10 > 9, -10 < -1), "All true", "One or more false"

 Example 2

= IF(AND(SUM('InternetSales_USD'[SalesAmount_USD])
 >SUM('ResellerSales_USD'[SalesAmount_USD])
 , CALCULATE(SUM('InternetSales_USD'[SalesAmount_USD]), PREVIOUSYEAR('DateTime'[DateKey]))
 >CALCULATE(SUM('ResellerSales_USD'[SalesAmount_USD]), PREVIOUSYEAR('DateTime'[DateKey]))
)
 , "Internet Hit"
 , ""
)

Checks whether both arguments are TRUE, and returns TRUE if both arguments are TRUE. Otherwise returns

false.

Returns true or false depending on the combination of values that you test.

The ANDAND function in DAX accepts only two (2) arguments. If you need to perform an AND operation on multiple

expressions, you can create a series of calculations or, better, use the AND operator (&&&&) to join all of them in a

simpler expression.

The following formula shows the syntax of the AND function.

Because both conditions, passed as arguments, to the AND function are true, the formula returns "All True".

The following sample uses the AND function with nested formulas to compare two sets of calculations at the

same time. For each product category, the formula determines if the current year sales and previous year sales

of the Internet channel are larger than the Reseller channel for the same periods. If both conditions are true, for

each category the formula returns the value, "Internet hit".

RO W L A B EL SRO W L A B EL S 20052005 20062006 20072007 20082008 --
GRA N DGRA N D
TOTA LTOTA L

Bib-Shorts

Bike Racks

Bike Stands Internet Hit

Bottles and
Cages

Internet Hit

Bottom
Brackets

Brakes

Caps

Chains

Cleaners

Cranksets

Derailleurs

Fenders Internet Hit

Forks

Gloves

Handlebars

Headsets

Helmets

Hydration
Packs

Jerseys

Lights

Locks

Mountain
Bikes

Returns

Mountain
Frames

Panniers

Pedals

Pumps

Road Bikes

Road Frames

Saddles

Shorts

Socks

Tights

Tires and
Tubes

Internet Hit

Touring Bikes

Touring
Frames

Vests

Wheels

Grand Total

RO W L A B EL SRO W L A B EL S 20052005 20062006 20072007 20082008 --
GRA N DGRA N D
TOTA LTOTA L

 See also
Logical functions

BITAND
 10/26/2021 • 2 minutes to read

 Syntax

BITAND(<number>, <number>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

Number Any scalar expression that returns number. If not an integer,
it is truncated.

 Return value

 Remarks

 Example

EVALUATE { BITAND(13, 11) }

 See also

Returns a bitwise AND of two numbers.

A bitwise AND of two numbers.

This function supports both positive and negative numbers.

The following DAX query:

Returns 9.

BITLSHIFT

BITRSHIFT

BITOR

BITXOR

BITLSHIFT
 10/26/2021 • 2 minutes to read

 Syntax

BITLSHIFT(<Number>, <Shift_Amount>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

Number Any DAX expression that returns an integer expression.

Shift_Amount Any DAX expression that returns an integer expression.

 Return value

 Remarks

 Examples
 Example 1Example 1

EVALUATE
 { BITLSHIFT(2, 3) }

 Example 2Example 2

EVALUATE
 { BITLSHIFT(128, -1) }

Returns a number shifted left by the specified number of bits.

An integer value.

Be sure to understand the nature of bitshift operations and overflow/underflow of integers before using DAX

bitshift functions.

If Shift_Amount is negative, it will shift in the opposite direction.

If absolute value of Shift_Amount is larger than 64, there will be no error but will result in

overflow/underflow.

There’s no limit on Number, but the result may overflow/underflow.

The following DAX query:

Returns 16.

The following DAX query:

Returns 64.

Example 3Example 3

Define
 Measure Sales[LeftShift] = BITLSHIFT(SELECTEDVALUE(Sales[Amount]), 3)

EVALUATE
SUMMARIZECOLUMNS(
 Sales[Amount],
 "LEFTSHIFT",
 [LeftShift]
)

 See also

The following DAX query:

Shifts left each sales amount with 3 bits and returns the bit-shifted sales amount.

BITRSHIFT

BITAND

BITOR

BITXOR

BITOR
 10/26/2021 • 2 minutes to read

 Syntax

BITOR(<number>, <number>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

Number Any scalar expression that returns number. If not an integer,
it is truncated.

 Return value

 Remarks

 Example

EVALUATE
 { BITOR(9, 10) }

 See also

Returns a bitwise OR of two numbers.

A bitwise OR of two numbers.

This function supports both positive and negative numbers.

The following DAX query:

Returns 11.

BITAND

BITXOR

BITLSHIFT

BITRSHIFT

BITRSHIFT
 10/26/2021 • 2 minutes to read

 Syntax

BITRSHIFT(<Number>, <Shift_Amount>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

Number Any DAX expression that returns an integer expression.

Shift_Amount Any DAX expression that returns an integer expression.

 Return value

 Remarks

 Examples
 Example 1Example 1

EVALUATE
 { BITRSHIFT(16, 3) }

 Example 2Example 2

EVALUATE
 { BITRSHIFT(1024, -3) }

Returns a number shifted right by the specified number of bits.

An integer value.

Be sure to understand the nature of bitshift operations and overflow/underflow of integers before using DAX

bitshift functions.

If Shift_Amount is negative, it will shift in the opposite direction.

If absolute value of Shift_Amount is larger than 64, there will be no error but will result in

overflow/underflow.

There’s no limit on Number, but the result may overflow/underflow.

The following DAX query:

Returns 2.

The following DAX query:

Returns 8192.

Example 3Example 3

Define
 Measure Sales[RightShift] = BITRSHIFT(SELECTEDVALUE(Sales[Amount]), 3)

EVALUATE
SUMMARIZECOLUMNS(
 Sales[Amount],
 "RIGHTSHIFT",
 [RightShift]
)

 See also

The following DAX query:

Shifts right each sales amount with 3 bits and returns the bit-shifted sales amount.

BITLSHIFT

BITAND

BITOR

BITXOR

BITXOR
 10/26/2021 • 2 minutes to read

 Syntax

BITXOR(<number>, <number>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

Number Any scalar expression that returns number. If not an integer,
it is truncated.

 Return value

 Remarks

 Example

EVALUATE { BITXOR(9, 10) }

 See also

Returns a bitwise XOR of two numbers.

A bitwise XOR of two numbers.

This function supports both positive and negative numbers.

The following DAX query:

Returns 3.

BITOR

BITAND

BITLSHIFT

BITRSHIFT

COALESCE
 10/26/2021 • 2 minutes to read

 Syntax

COALESCE(<expression>, <expression>[, <expression>]…)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

expression Any DAX expression that returns a scalar expression.

 Return value

 Remarks

 Example 1

EVALUATE { COALESCE(BLANK(), 10, DATE(2008, 3, 3)) }

 Example 2

= COALESCE(SUM(FactInternetSales[SalesAmount]), 0)

Returns the first expression that does not evaluate to BLANK. If all expressions evaluate to BLANK, BLANK is

returned.

A scalar value coming from one of the expressions or BLANK if all expressions evaluate to BLANK.

Input expressions may be of different data types.

The following DAX query:

Returns 10 , which is the first expression that does not evaluate to BLANK.

The following DAX expression:

Returns the sum of all values in the SalesAmount column in the FactInternetSales table, or 0 . This can be used

to convert BLANK values of total sales to 0 .

FALSE
 10/26/2021 • 2 minutes to read

 Syntax

FALSE()

 Return value

 Remarks

 Example

= IF(SUM('InternetSales_USD'[SalesAmount_USD]) >200000, TRUE(), false())

RO W L A B EL SRO W L A B EL S 20052005 20062006 20072007 20082008 --
GRA N DGRA N D
TOTA LTOTA L

Accessories FALSE FALSE TRUE TRUE FALSE TRUE

Bikes TRUE TRUE TRUE TRUE FALSE TRUE

Clothing FALSE FALSE FALSE FALSE FALSE TRUE

Components FALSE FALSE FALSE FALSE FALSE FALSE

FALSE FALSE FALSE FALSE FALSE FALSE

Grand Total TRUE TRUE TRUE TRUE FALSE TRUE

 See also

Returns the logical value FALSE.

Always FALSE.

The word FALSE is also interpreted as the logical value FALSE.

The formula returns the logical value FALSE when the value in the column,

'InternetSales_USD'[SalesAmount_USD], is less than or equal to 200000.

The following table shows the results when the example formula is used with

'ProductCategory'[ProductCategoryName] in Row Labels and 'DateTime'[CalendarYear] in Column Labels.

TRUE function

NOT function

IF function

IF
 10/26/2021 • 2 minutes to read

 Syntax

IF(<logical_test>, <value_if_true>[, <value_if_false>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

logical_test Any value or expression that can be evaluated to TRUE or
FALSE.

value_if_true The value that's returned if the logical test is TRUE.

value_if_false (Optional) The value that's returned if the logical test is
FALSE. If omitted, BLANK is returned.

 Return value

 Remarks

 Examples

Checks a condition, and returns one value when it's TRUE, otherwise it returns a second value.

Either value_if_truevalue_if_true, value_if_falsevalue_if_false, or BLANK.

The IF function can return a variant data type if value_if_truevalue_if_true and value_if_falsevalue_if_false are of different data

types, but the function attempts to return a single data type if both value_if_truevalue_if_true and value_if_falsevalue_if_false

are of numeric data types. In the latter case, the IF function will implicitly convert data types to

accommodate both values.

For example, the formula IF(<condition>, TRUE(), 0) returns TRUE or 0, but the formula

IF(<condition>, 1.0, 0) returns only decimal values even though value_if_falsevalue_if_false is of the whole

number data type. To learn more about implicit data type conversion, see Data types.

To execute the branch expressions regardless of the condition expression, use IF.EAGER instead.

The following ProductProduct table calculated column definitions use the IF function in different ways to classify each

product based on its list price.

The first example tests whether the L ist Pr iceList Pr ice column value is less than 500. When this condition is true, the

value LowLow is returned. Because there's no value_if_falsevalue_if_false value, BLANK is returned.

Examples in this article can be added to the Power BI Desktop sample model. To get the model, see DAX sample

model.

https://aka.ms/dax-docs-samples

Price Group =
IF(
 'Product'[List Price] < 500,
 "Low"
)

Price Group =
IF(
 'Product'[List Price] < 500,
 "Low",
 "High"
)

Price Group =
IF(
 'Product'[List Price] < 500,
 "Low",
 IF(
 'Product'[List Price] < 1500,
 "Medium",
 "High"
)
)

TIPTIP

 See also

The second example uses the same test, but this time includes a value_if_falsevalue_if_false value. So, the formula classifies

each product as either LowLow or HighHigh.

The third example uses the same test, but this time nests an IF function to perform an additional test. So, the

formula classifies each product as either LowLow , MediumMedium, or HighHigh.

When you need to nest multiple IF functions, the SWITCH function might be a better option. This function provides a

more elegant way to write an expression that returns more than two possible values.

IF.EAGER function

SWITCH function (DAX)

Logical functions

IF.EAGER
 10/26/2021 • 2 minutes to read

 Syntax

IF.EAGER(<logical_test>, <value_if_true>[, <value_if_false>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

logical_test Any value or expression that can be evaluated to TRUE or
FALSE.

value_if_true The value that's returned if the logical test is TRUE.

value_if_false (Optional) The value that's returned if the logical test is
FALSE. If omitted, BLANK is returned.

 Return value

 Remarks

Checks a condition, and returns one value when TRUE, otherwise it returns a second value. It uses an eager

execution plan which always executes the branch expressions regardless of the condition expression.

Either value_if_truevalue_if_true, value_if_falsevalue_if_false, or BLANK.

VAR _value_if_true = <value_if_true>
VAR _value_if_false = <value_if_false>
RETURN
IF (<logical_test>, _value_if_true, _value_if_false)

The IF.EAGER function can return a variant data type if value_if_true and value_if_false are of different

data types, but the function attempts to return a single data type if both value_if_truevalue_if_true and

value_if_falsevalue_if_false are of numeric data types. In the latter case, the IF.EAGER function will implicitly convert

data types to accommodate both values.

For example, the formula IF.EAGER(<condition>, TRUE(), 0) returns TRUE or 0, but the formula

IF.EAGER(<condition>, 1.0, 0) returns only decimal values even though value_if_falsevalue_if_false is of the whole

number data type. To learn more about implicit data type conversion, see Data types.

IF.EAGER has the same functional behavior as the IF function, but performance may differ due to

differences in execution plans. IF.EAGER(<logical_test>, <value_if_true>, <value_if_false>) has the

same execution plan as the following DAX expression:

Note: The two branch expressions are evaluated regardless of the condition expression.

Examples

 See also

See IF Examples.

IF function

Logical functions

IFERROR
 10/26/2021 • 2 minutes to read

 Syntax

IFERROR(value, value_if_error)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

value Any value or expression.

value_if_error Any value or expression.

 Return value

 Remarks

 Example

= IFERROR(25/0,9999)

 See also

Evaluates an expression and returns a specified value if the expression returns an error ; otherwise returns the

value of the expression itself.

A scalar of the same type as valuevalue

You can use the IFERROR function to trap and handle errors in an expression.

If valuevalue or value_if_errorvalue_if_error is an empty cell, IFERROR treats it as an empty string value ("").

The IFERROR function is based on the IF function, and uses the same error messages, but has fewer

arguments. The relationship between the IFERROR function and the IF function as follows:

IFERROR(A,B) := IF(ISERROR(A), B, A)

Values that are returned for A and B must be of the same data type; therefore, the column or expression

used for valuevalue and the value returned for value_if_errorvalue_if_error must be the same data type.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

For best practices when using IFERROR, see Appropriate use of error functions.

The following example returns 9999 if the expression 25/0 evaluates to an error. If the expression returns a

value other than error, that value is passed to the invoking expression.

Logical functions

NOT
 10/26/2021 • 2 minutes to read

 Syntax

NOT(<logical>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

logical A value or expression that can be evaluated to TRUE or
FALSE.

 Return value

 Example

= NOT([CalculatedColumn1])

 See also

Changes FALSE to TRUE, or TRUE to FALSE.

TRUE OR FALSE.

The following example retrieves values from the calculated column that was created to illustrate the IF function.

For that example, the calculated column was named using the default name, Calculated Column1Calculated Column1 , and

contains the following formula: = IF([Orders]<300,"true","false")

The formula checks the value in the column, [Orders], and returns "true" if the number of orders is under 300.

Now create a new calculated column, Calculated Column2Calculated Column2 , and type the following formula.

For each row in Calculated Column1Calculated Column1 , the values "true" and "false" are interpreted as the logical values TRUE or

FALSE, and the NOT function returns the logical opposite of that value.

TRUE function

FALSE function

IF function

OR
 10/26/2021 • 2 minutes to read

 Syntax

OR(<logical1>,<logical2>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

logical_1, logical_2 The logical values you want to test.

 Return value

 Remarks

 Example

IF(OR(CALCULATE(SUM('ResellerSales_USD'[SalesAmount_USD]),
'ProductSubcategory'[ProductSubcategoryName]="Touring Bikes") > 1000000
 , CALCULATE(SUM('ResellerSales_USD'[SalesAmount_USD]), 'DateTime'[CalendarYear]=2007) > 2500000
)
 , "Circle of Excellence"
 , ""
)

RO W L A B EL SRO W L A B EL S 20052005 20062006 20072007 20082008 --
GRA N DGRA N D
TOTA LTOTA L

Abbas, Syed E

Checks whether one of the arguments is TRUE to return TRUE. The function returns FALSE if both arguments are

FALSE.

A Boolean value. The value is TRUE if any of the two arguments is TRUE; the value is FALSE if both the

arguments are FALSE.

The OROR function in DAX accepts only two (2) arguments. If you need to perform an OR operation on

multiple expressions, you can create a series of calculations or, better, use the OR operator (| || |) to join all of

them in a simpler expression.

The function evaluates the arguments until the first TRUE argument, then returns TRUE.

The following example shows how to use the OR function to obtain the sales people that belong to the Circle of

Excellence. The Circle of Excellence recognizes those who have achieved more than a million dollars in Touring

Bikes sales or sales of over two and a half million dollars in 2007.

Returns

Alberts, Amy
E

Ansman-
Wolfe, Pamela
O

Blythe,
Michael G

Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Campbell,
David R

Carson, Jillian Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Ito, Shu K

Jiang,
Stephen Y

Mensa-
Annan, Tete A

Mitchell,
Linda C

Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Pak, Jae B Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Reiter, Tsvi
Michael

Saraiva, José
Edvaldo

Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Tsoflias, Lynn
N

Valdez, Rachel
B

Vargas,
Garrett R

Varkey
Chudukatil,
Ranjit R

Circle of
Excellence

Grand Total Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

RO W L A B EL SRO W L A B EL S 20052005 20062006 20072007 20082008 --
GRA N DGRA N D
TOTA LTOTA L

See also
Logical functions

SWITCH
 10/26/2021 • 2 minutes to read

 Syntax

SWITCH(<expression>, <value>, <result>[, <value>, <result>]…[, <else>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

expression Any DAX expression that returns a single scalar value, where
the expression is to be evaluated multiple times (for each
row/context).

value A constant value to be matched with the results of
expression.

result Any scalar expression to be evaluated if the results of
expression match the corresponding value.

else Any scalar expression to be evaluated if the result of
expression doesn't match any of the value arguments.

 Return value

 Remarks

 Example

= SWITCH([Month], 1, "January", 2, "February", 3, "March", 4, "April"
 , 5, "May", 6, "June", 7, "July", 8, "August"
 , 9, "September", 10, "October", 11, "November", 12, "December"
 , "Unknown month number")

Evaluates an expression against a list of values and returns one of multiple possible result expressions.

A scalar value coming from one of the result expressions, if there was a match with value, or from the else

expression, if there was no match with any value.

All result expressions and the else expression must be of the same data type.

The following example creates a calculated column of month names.

TRUE
 10/26/2021 • 2 minutes to read

 Syntax

TRUE()

 Return value

 Remarks

 Example

= IF(SUM('InternetSales_USD'[SalesAmount_USD]) >200000, TRUE(), false())

RO W L A B EL SRO W L A B EL S 20052005 20062006 20072007 20082008 --
GRA N DGRA N D
TOTA LTOTA L

Accessories FALSE FALSE TRUE TRUE FALSE TRUE

Bikes TRUE TRUE TRUE TRUE FALSE TRUE

Clothing FALSE FALSE FALSE FALSE FALSE TRUE

Components FALSE FALSE FALSE FALSE FALSE FALSE

FALSE FALSE FALSE FALSE FALSE FALSE

Grand Total TRUE TRUE TRUE TRUE FALSE TRUE

 See also

Returns the logical value TRUE.

Always TRUE.

The word TRUE is also interpreted as the logical value TRUE.

The formula returns the logical value TRUE when the value in the column,

'InternetSales_USD'[SalesAmount_USD], is greater than 200000.

The following table shows the results when the example formula is used in a report with

'ProductCategory'[ProductCategoryName] in Row Labels and 'DateTime'[CalendarYear] in Column Labels.

FALSE

NOT

IF

Math and Trig functions
 10/26/2021 • 2 minutes to read

 In this category

F UN C T IO NF UN C T IO N DESC RIP T IO NDESC RIP T IO N

ABS Returns the absolute value of a number.

ACOS Returns the arccosine, or inverse cosine, of a number.

ACOSH Returns the inverse hyperbolic cosine of a number.

ACOT Returns the arccotangent, or inverse cotangent, of a number.

ACOTH Returns the inverse hyperbolic cotangent of a number.

ASIN Returns the arcsine, or inverse sine, of a number.

ASINH Returns the inverse hyperbolic sine of a number.

ATAN Returns the arctangent, or inverse tangent, of a number.

ATANH Returns the inverse hyperbolic tangent of a number.

CEILING Rounds a number up, to the nearest integer or to the
nearest multiple of significance.

CONVERT Converts an expression of one data type to another.

COS Returns the cosine of the given angle.

COSH Returns the hyperbolic cosine of a number.

COT Returns the cotangent of an angle specified in radians.

COTH Returns the hyperbolic cotangent of a hyperbolic angle.

CURRENCY Evaluates the argument and returns the result as currency
data type.

DEGREES Converts radians into degrees.

DIVIDE Performs division and returns alternate result or BLANK() on
division by 0.

The mathematical functions in Data Analysis Expressions (DAX) are very similar to the Excel mathematical and

trigonometric functions. This section lists the mathematical functions provided by DAX.

EVEN Returns number rounded up to the nearest even integer.

EXP Returns e raised to the power of a given number.

FACT Returns the factorial of a number, equal to the series
1*2*3*...* , ending in the given number.

FLOOR Rounds a number down, toward zero, to the nearest multiple
of significance.

GCD Returns the greatest common divisor of two or more
integers.

INT Rounds a number down to the nearest integer.

ISO.CEILING Rounds a number up, to the nearest integer or to the
nearest multiple of significance.

LCM Returns the least common multiple of integers.

LN Returns the natural logarithm of a number.

LOG Returns the logarithm of a number to the base you specify.

LOG10 Returns the base-10 logarithm of a number.

MROUND Returns a number rounded to the desired multiple.

ODD Returns number rounded up to the nearest odd integer.

PI Returns the value of Pi, 3.14159265358979, accurate to 15
digits.

POWER Returns the result of a number raised to a power.

QUOTIENT Performs division and returns only the integer portion of the
division result.

RADIANS Converts degrees to radians.

RAND Returns a random number greater than or equal to 0 and
less than 1, evenly distributed.

RANDBETWEEN Returns a random number in the range between two
numbers you specify.

ROUND Rounds a number to the specified number of digits.

ROUNDDOWN Rounds a number down, toward zero.

ROUNDUP Rounds a number up, away from 0 (zero).

F UN C T IO NF UN C T IO N DESC RIP T IO NDESC RIP T IO N

SIGN Determines the sign of a number, the result of a calculation,
or a value in a column.

SIN Returns the sine of the given angle.

SINH Returns the hyperbolic sine of a number.

SQRT Returns the square root of a number.

SQRTPI Returns the square root of (number * pi).

TAN Returns the tangent of the given angle.

TANH Returns the hyperbolic tangent of a number.

TRUNC Truncates a number to an integer by removing the decimal,
or fractional, part of the number.

F UN C T IO NF UN C T IO N DESC RIP T IO NDESC RIP T IO N

ABS
 10/26/2021 • 2 minutes to read

 Syntax

ABS(<number>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number The number for which you want the absolute value.

 Return value

 Remarks

 Example

= ABS([DealerPrice]-[ListPrice])

 See also

Returns the absolute value of a number.

A decimal number.

The absolute value of a number is a decimal number, whole or decimal, without its sign. You can use the ABS

function to ensure that only non-negative numbers are returned from expressions when nested in functions that

require a positive number.

The following example returns the absolute value of the difference between the list price and the dealer price,

which you might use in a new calculated column, DealerMarkupDealerMarkup.

Math and Trig functions

SIGN function

ACOS
 10/26/2021 • 2 minutes to read

 Syntax

ACOS(number)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

Number The cosine of the angle you want and must be from -1 to 1.

 Return value

 Remarks

 Example

F O RM UL AF O RM UL A DESC RIP T IO NDESC RIP T IO N RESULTRESULT

= ACOS(-0.5) Arccosine of -0.5 in radians, 2*pi/3. 2.094395102

= ACOS(-0.5)*180/PI() Arccosine of -0.5 in degrees. 120

Returns the arccosine, or inverse cosine, of a number. The arccosine is the angle whose cosine is number. The

returned angle is given in radians in the range 0 (zero) to pi.

Returns the arccosine, or inverse cosine, of a number.

If you want to convert the result from radians to degrees, multiply it by 180/PI() or use the DEGREES function.

ACOSH
 10/26/2021 • 2 minutes to read

 Syntax

ACOSH(number)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number Any real number equal to or greater than 1.

 Return value

 Remarks

 Example

F O RM UL AF O RM UL A DESC RIP T IO NDESC RIP T IO N RESULTRESULT

= ACOSH(1) Inverse hyperbolic cosine of 1. 0

= ACOSH(10) Inverse hyperbolic cosine of 10. 2.993228

Returns the inverse hyperbolic cosine of a number. The number must be greater than or equal to 1. The inverse

hyperbolic cosine is the value whose hyperbolic cosine is number, so ACOSH(COSH(number)) equals number.

Returns the inverse hyperbolic cosine of a number.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-level

security (RLS) rules.

ACOT
 10/26/2021 • 2 minutes to read

 Syntax

ACOT(number)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

Number The cosine of the angle you want. Must be a real number.

 Return value

Returns the principal value of the arccotangent, or inverse cotangent of a number.

A single decimal value.

ACOTH
 10/26/2021 • 2 minutes to read

 Syntax

ACOTH(number)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

Number The absolute value of Number must be greater than 1.

 Return value

 Remarks

Returns the inverse hyperbolic cotangent of a number.

A single decimal value.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-level

security (RLS) rules.

ASIN
 10/26/2021 • 2 minutes to read

 Syntax

ASIN(number)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number The sine of the angle you want and must be from -1 to 1.

 Return value

 Remarks

 Example

F O RM UL AF O RM UL A DESC RIP T IO NDESC RIP T IO N RESULTRESULT

= ASIN(-0.5) Arcsine of -0.5 in radians, -pi/6 -0.523598776

= ASIN(-0.5)*180/PI() Arcsine of -0.5 in degrees -30

= DEGREES(ASIN(-0.5)) Arcsine of -0.5 in degrees -30

Returns the arcsine, or inverse sine, of a number. The arcsine is the angle whose sine is number. The returned

angle is given in radians in the range -pi/2 to pi/2.

Returns the arcsine, or inverse sine, of a number.

To express the arcsine in degrees, multiply the result by 180/PI() or use the DEGREES function.

ASINH
 10/26/2021 • 2 minutes to read

 Syntax

ASINH(number)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number Any real number.

 Return value

 Remarks

 Example

F O RM UL AF O RM UL A DESC RIP T IO NDESC RIP T IO N RESULTRESULT

= ASINH(-2.5) Inverse hyperbolic sine of -2.5 -1.647231146

= ASINH(10) Inverse hyperbolic sine of 10 2.99822295

Returns the inverse hyperbolic sine of a number. The inverse hyperbolic sine is the value whose hyperbolic sine

is number, so ASINH(SINH(number)) equals number.

Returns the inverse hyperbolic sine of a number.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-level

security (RLS) rules.

ATAN
 10/26/2021 • 2 minutes to read

 Syntax

ATAN(number)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number The tangent of the angle you want.

 Return value

 Remarks

 Example

F O RM UL AF O RM UL A DESC RIP T IO NDESC RIP T IO N RESULTRESULT

= ATAN(1) Arctangent of 1 in radians, pi/4 0.785398163

= ATAN(1)*180/PI() Arctangent of 1 in degrees 45

Returns the arctangent, or inverse tangent, of a number. The arctangent is the angle whose tangent is number.

The returned angle is given in radians in the range -pi/2 to pi/2.

Returns the inverse hyperbolic tangent of a number.

To express the arctangent in degrees, multiply the result by 180/PI() or use the DEGREES function.

ATANH
 10/26/2021 • 2 minutes to read

 Syntax

ATANH(number)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number Any real number between 1 and -1.

 Return value

 Remarks

 Example

F O RM UL AF O RM UL A DESC RIP T IO NDESC RIP T IO N RESULTRESULT

= ATANH(0.76159416) Inverse hyperbolic tangent of
0.76159416

1.00000001

= ATANH(-0.1) -0.100335348

 See also

Returns the inverse hyperbolic tangent of a number. Number must be between -1 and 1 (excluding -1 and 1).

The inverse hyperbolic tangent is the value whose hyperbolic tangent is number, so ATANH(TANH(number))

equals number.

Returns the inverse hyperbolic tangent of a number.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-level

security (RLS) rules.

ATAN function

CEILING
 10/26/2021 • 2 minutes to read

 Syntax

CEILING(<number>, <significance>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number The number you want to round, or a reference to a column
that contains numbers.

significance The multiple of significance to which you want to round. For
example, to round to the nearest integer, type 1.

 Return value

 Remarks

 Example 1

= CEILING(4.42,0.05)

Rounds a number up, to the nearest integer or to the nearest multiple of significance.

A number rounded as specified.

There are two CEILING functions in DAX, with the following differences:

The CEILING function emulates the behavior of the CEILING function in Excel.

The ISO.CEILING function follows the ISO-defined behavior for determining the ceiling value.

The two functions return the same value for positive numbers, but different values for negative numbers.

When using a positive multiple of significance, both CEILING and ISO.CEILING round negative numbers

upward (toward positive infinity). When using a negative multiple of significance, CEILING rounds

negative numbers downward (toward negative infinity), while ISO.CEILING rounds negative numbers

upward (toward positive infinity).

The return type is usually of the same type of the significant argument, with the following exceptions:

If the number argument type is currency, the return type is currency.

If the significance argument type is Boolean, the return type is integer.

If the significance argument type is non-numeric, the return type is real.

The following formula returns 4.45. This might be useful if you want to avoid using smaller units in your pricing.

If an existing product is priced at $4.42, you can use CEILING to round prices up to the nearest unit of five cents.

Example 2

= CEILING([ProductPrice],0.05)

 See also

The following formula returns similar results as the previous example, but uses numeric values stored in the

column, ProductPr iceProductPr ice.

Math and Trig functions

FLOOR function

ISO.CEILING function

ROUNDUP function

CONVERT
 10/26/2021 • 2 minutes to read

 Syntax

CONVERT(<Expression>, <Datatype>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

Expression Any valid expression.

Datatype An enumeration that includes: INTEGER(Whole Number),
DOUBLE(Decimal Number), STRING(Text),
BOOLEAN(True/False), CURRENCY(Fixed Decimal Number),
DATETIME(Date, Time, etc).

 Return value

 Remarks

 Example

EVALUATE { CONVERT(DATE(1900, 1, 1), INTEGER) }

[VA L UE][VA L UE]

2

Converts an expression of one data type to another.

Returns the value of <Expression>, translated to <Datatype>.

The function returns an error when a value cannot be converted to the specified data type.

DAX calculated columns must be of a single data type. Since MEDIAN and MEDIANX functions over an

integer column return mixed data types, either integer or double, the following calculated column

expression will return an error as a result: MedianNumberCarsOwned = MEDIAN(DimCustomer[NumberCarsOwned]) .

To avoid mixed data types, change the expression to always return the double data type, for example:

MedianNumberCarsOwned = MEDIANX(DimCustomer, CONVERT([NumberCarsOwned], DOUBLE)) .

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

DAX query

Returns

COS
 10/26/2021 • 2 minutes to read

 Syntax

COS(number)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number Required. The angle in radians for which you want the cosine.

 Return value

 Remarks

 Example

F O RM UL AF O RM UL A DESC RIP T IO NDESC RIP T IO N RESULTRESULT

= COS(1.047) Cosine of 1.047 radians 0.5001711

= COS(60*PI()/180) Cosine of 60 degrees 0.5

= COS(RADIANS(60)) Cosine of 60 degrees 0.5

Returns the cosine of the given angle.

Returns the cosine of the given angle.

If the angle is in degrees, either multiply the angle by PI()/180 or use the RADIANS function to convert the angle

to radians.

COSH
 10/26/2021 • 2 minutes to read

 Syntax

COSH(number)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number Required. Any real number for which you want to find the
hyperbolic cosine.

 Return value

 Remarks

 Example

F O RM UL AF O RM UL A DESC RIP T IO NDESC RIP T IO N RESULTRESULT

= COSH(4) Hyperbolic cosine of 4 27.308233

= COSH(EXP(1)) Hyperbolic cosine of the base of the
natural logarithm.

7.6101251

Returns the hyperbolic cosine of a number.

The hyperbolic cosine of a number.

The formula for the hyperbolic cosine is:

$$\text{COSH}(z) = \frac{e^{z} + e^{-z}}{2}$$

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

COT
 10/26/2021 • 2 minutes to read

 Syntax

COT (<number>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number The angle in radians for which you want the cotangent.

 Return value

 Remarks

 Example

EVALUATE { COT(30) }

[VA L UE][VA L UE]

-0.156119952161659

Returns the cotangent of an angle specified in radians.

The cotangent of the given angle.

The absolute value of number must be less than 2^27 and cannot be 0.

If number is outside its constraints, an error is returned.

If number is a non-numeric value, an error is returned.

The following DAX query,

Returns

COTH
 10/26/2021 • 2 minutes to read

 Syntax

COTH (<number>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number The hyperbolic angle in radians for which you want the
hyperbolic cotangent.

 Return value

 Remarks

 Example

EVALUATE { COTH(2) }

[VA L UE][VA L UE]

1.03731472072755

Returns the hyperbolic cotangent of a hyperbolic angle.

The hyperbolic cotangent of the given angle.

The hyperbolic cotangent is an analog of the ordinary (circular) cotangent.

The absolute value of number must be less than 2^{27} and cannot be 0.

If number is outside its constraints, an error is returned

If number is a non-numeric value, an error is returned.

The following equation is used:

$$\text{COTH}(N) = \frac{1}{\text{TANH}(N)} = \frac{\text{COSH(N)}}{\text{SINH(N)}} = \frac{e^{N} + e^{-

N}}{e^{N} - e^{-N}}$$

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query,

Returns

CURRENCY
 10/26/2021 • 2 minutes to read

 Syntax

CURRENCY(<value>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

value Any DAX expression that returns a single scalar value where
the expression is to be evaluated exactly once before all
other operations.

 Return value

 Remarks

 Example

= CURRENCY(1234.56)

Evaluates the argument and returns the result as currency data type.

The value of the expression evaluated and returned as a currency type value.

The CURRENCY function rounds up the 5th significant decimal, in value, to return the 4th decimal digit.

Rounding up occurs if the 5th significant decimal is equal or larger than 5. For example, if value is

3.6666666666666 then converting to currency returns \$3.6667. However, if value is 3.0123456789 then

converting to currency returns \$3.0123.

If the data type of the expression is TrueFalse then CURRENCY(<TrueFalse>) will return \$1.0000 for True

values and \$0.0000 for False values.

If the data type of the expression is Text then CURRENCY(<Text>) will try to convert text to a number. If

conversion succeeds the number will be converted to currency, otherwise an error is returned.

If the data type of the expression is DateTime then CURRENCY(<DateTime>) will convert the datetime

value to a number and that number to currency. DateTime values have an integer part that represents the

number of days between the given date and 1900-03-01 and a fraction that represents the fraction of a

day (where 12 hours or noon is 0.5 day). If the value of the expression is not a proper DateTime value an

error is returned.

Convert number 1234.56 to currency data type.

Returns the value $1234.5600.

DEGREES
 10/26/2021 • 2 minutes to read

 Syntax

DEGREES(angle)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

angle Required. The angle in radians that you want to convert.

 Example

F O RM UL AF O RM UL A DESC RIP T IO NDESC RIP T IO N RESULTRESULT

= DEGREES(PI()) Degrees of pi radians 180

Converts radians into degrees.

DIVIDE
 10/26/2021 • 2 minutes to read

 Syntax

DIVIDE(<numerator>, <denominator> [,<alternateresult>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

numerator The dividend or number to divide.

denominator The divisor or number to divide by.

alternateresult (Optional) The value returned when division by zero results
in an error. When not provided, the default value is BLANK().

 Return value

 Remarks

 Example

= DIVIDE(5,2)

 Example 1

= DIVIDE(5,0)

 Example 2

Performs division and returns alternate result or BLANK() on division by 0.

A decimal number.

Alternate result on divide by 0 must be a constant.

For best practices when using DIVIDE, see DIVIDE function vs. divide operator (/) in DAX.

The following example returns 2.5.

The following example returns BLANK.

The following example returns 1.

= DIVIDE(5,0,1)

 See also
QUOTIENT function

Math and Trig functions

EVEN
 10/26/2021 • 2 minutes to read

 Syntax

EVEN(number)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number The value to round.

 Return value

 Remarks

 Example

F O RM UL AF O RM UL A DESC RIP T IO NDESC RIP T IO N RESULTRESULT

= EVEN(1.5) Rounds 1.5 to the nearest even integer 2

= EVEN(3) Rounds 3 to the nearest even integer 4

= EVEN(2) Rounds 2 to the nearest even integer 2

= EVEN(-1) Rounds -1 to the nearest even integer -2

Returns number rounded up to the nearest even integer. You can use this function for processing items that

come in twos. For example, a packing crate accepts rows of one or two items. The crate is full when the number

of items, rounded up to the nearest two, matches the crate's capacity.

Returns number rounded up to the nearest even integer.

If number is nonnumeric, EVEN returns the #VALUE! error value.

Regardless of the sign of number, a value is rounded up when adjusted away from zero. If number is an

even integer, no rounding occurs.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

EXP
 10/26/2021 • 2 minutes to read

 Syntax

EXP(<number>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number The exponent applied to the base e. The constant e equals
2.71828182845904, the base of the natural logarithm.

 Return value

 Exceptions

 Remarks

 Example

= EXP([Power])

 See also

Returns e raised to the power of a given number. The constant e equals 2.71828182845904, the base of the

natural logarithm.

A decimal number.

EXP is the inverse of LN, which is the natural logarithm of the given number.

To calculate powers of bases other than e, use the exponentiation operator (^). For more information, see

DAX Operator Reference.

The following formula calculates e raised to the power of the number contained in the column, [Power] .

Math and Trig functions

LN function

EXP function

LOG function

LOG function

FACT
 10/26/2021 • 2 minutes to read

 Syntax

FACT(<number>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number The non-negative number for which you want to calculate
the factorial.

 Return value

 Remarks

 Example

= FACT([Values])

VA L UESVA L UES RESULT SRESULT S

0 1

1 1

2 2

3 6

4 24

Returns the factorial of a number, equal to the series 1*2*3*...* , ending in the given number.

A decimal number.

If the number is not an integer, it is truncated and an error is returned. If the result is too large, an error is

returned.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following formula returns the factorial for the series of integers in the column, [Values] .

The following table shows the expected results:

5 120

170 7.257415615308E+306

VA L UESVA L UES RESULT SRESULT S

 See also
Math and Trig functions

TRUNC function

FLOOR
 10/26/2021 • 2 minutes to read

 Syntax

FLOOR(<number>, <significance>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number The numeric value you want to round.

significance The multiple to which you want to round. The
argumentsnumbernumber and significancesignificance must either both be
positive, or both be negative.

 Return value

 Remarks

 Example

= FLOOR(InternetSales[Total Product Cost],.5)

VA L UESVA L UES EXP EC T ED RESULTEXP EC T ED RESULT

10.8423 10.8

8.0373 8

Rounds a number down, toward zero, to the nearest multiple of significance.

A decimal number.

If either argument is nonnumeric, FLOOR returns **#VALUE!**error value.

If number and significance have different signs, FLOOR returns the **#NUM!**error value.

Regardless of the sign of the number, a value is rounded down when adjusted away from zero. If the

number is an exact multiple of significance, no rounding occurs.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following formula takes the values in the [Total Product Cost] column from the table, InternetSales.and

rounds down to the nearest multiple of .1.

The following table shows the expected results for some sample values.

2.9733 2.9

VA L UESVA L UES EXP EC T ED RESULTEXP EC T ED RESULT

 See also
Math and Trig functions

GCD
 10/26/2021 • 2 minutes to read

 Syntax

GCD(number1, [number2], ...)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number1, number2, ... Number1 is required, subsequent numbers are optional. 1 to
255 values. If any value is not an integer, it is truncated.

 Return value

 Remarks

 Example

F O RM UL AF O RM UL A DESC RIP T IO NDESC RIP T IO N RESULTRESULT

= GCD(5, 2) Greatest common divisor of 5 and 2. 1

= GCD(24, 36) Greatest common divisor of 24 and
36.

12

= GCD(7, 1) Greatest common divisor of 7 and 1. 1

Returns the greatest common divisor of two or more integers. The greatest common divisor is the largest

integer that divides both number1 and number2 without a remainder.

The greatest common divisor of two or more integers.

If any argument is nonnumeric, GCD returns the #VALUE! error value.

If any argument is less than zero, GCD returns the #NUM! error value.

One divides any value evenly.

A prime number has only itself and one as even divisors.

If a parameter to GCD is >=2^53, GCD returns the #NUM! error value.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

INT
 10/26/2021 • 2 minutes to read

 Syntax

INT(<number>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number The number you want to round down to an integer

 Return value

 Remarks

 Example

= INT(1.5)

 See also

Rounds a number down to the nearest integer.

A whole number.

TRUNC and INT are similar in that both return integers. TRUNC removes the fractional part of the number. INT

rounds numbers down to the nearest integer based on the value of the fractional part of the number. INT and

TRUNC are different only when using negative numbers: TRUNC(-4.3) returns -4, but INT(-4.3) returns -5

because -5 is the lower number.

The following expression rounds the value to 1. If you use the ROUND function, the result would be 2.

Math and Trig functions

ROUND function

ROUNDUP function

ROUNDDOWN function

MROUND function

ISO.CEILING
 10/26/2021 • 2 minutes to read

 Syntax

ISO.CEILING(<number>[, <significance>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number The number you want to round, or a reference to a column
that contains numbers.

significance (optional) The multiple of significance to which you want to
round. For example, to round to the nearest integer, type 1.
If the unit of significance is not specified, the number is
rounded up to the nearest integer.

 Return value

 Remarks

 Example: Positive Numbers

Rounds a number up, to the nearest integer or to the nearest multiple of significance.

A number, of the same type as the number argument, rounded as specified.

There are two CEILING functions in DAX, with the following differences:

The CEILING function emulates the behavior of the CEILING function in Excel.

The ISO.CEILING function follows the ISO-defined behavior for determining the ceiling value.

The two functions return the same value for positive numbers, but different values for negative numbers. When

using a positive multiple of significance, both CEILING and ISO.CEILING round negative numbers upward

(toward positive infinity). When using a negative multiple of significance, CEILING rounds negative numbers

downward (toward negative infinity), while ISO.CEILING rounds negative numbers upward (toward positive

infinity).

The result type is usually the same type of the significance used as argument with the following exceptions:

If the first argument is of currency type then the result will be currency type.

If the optional argument is not included the result is of integer type.

If the significance argument is of Boolean type then the result is of integer type.

If the significance argument is non-numeric type then the result is of real type.

The following formula returns 4.45. This might be useful if you want to avoid using smaller units in your pricing.

= ISO.CEILING(4.42,0.05)

 Example: Negative Numbers

= ISO.CEILING(-4.42,0.05)

 See also

If an existing product is priced at $4.42, you can use ISO.CEILING to round prices up to the nearest unit of five

cents.

The following formula returns the ISO ceiling value of -4.40.

Math and Trig functions

FLOOR function

CEILING function

ROUNDUP function

LCM
 10/26/2021 • 2 minutes to read

 Syntax

LCM(number1, [number2], ...)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number1, number2,... Number1 is required, subsequent numbers are optional. 1 to
255 values for which you want the least common multiple. If
value is not an integer, it is truncated.

 Return value

 Remarks

 Example

F O RM UL AF O RM UL A DESC RIP T IO NDESC RIP T IO N RESULTRESULT

= LCM(5, 2) Least common multiple of 5 and 2. 10

= LCM(24, 36) Least common multiple of 24 and 36. 72

Returns the least common multiple of integers. The least common multiple is the smallest positive integer that is

a multiple of all integer arguments number1, number2, and so on. Use LCM to add fractions with different

denominators.

Returns the least common multiple of integers.

If any argument is nonnumeric, LCM returns the #VALUE! error value.

If any argument is less than zero, LCM returns the #NUM! error value.

If LCM(a,b) >=2^53, LCM returns the #NUM! error value.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

LN
 10/26/2021 • 2 minutes to read

 Syntax

LN(<number>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number The positive number for which you want the natural
logarithm.

 Return value

 Remarks

 Example

= LN([Values])

 See also

Returns the natural logarithm of a number. Natural logarithms are based on the constant e

(2.71828182845904).

A decimal number.

LN is the inverse of the EXP function.

The following example returns the natural logarithm of the number in the column, [Values] .

Math and Trig functions

EXP function

LOG
 10/26/2021 • 2 minutes to read

 Syntax

LOG(<number>,<base>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number The positive number for which you want the logarithm.

base The base of the logarithm. If omitted, the base is 10.

 Return value

 Remarks

 Example

= LOG(100,10)
= LOG(100)
= LOG10(100)

 See also

Returns the logarithm of a number to the base you specify.

A decimal number.

You might receive an error if the value is too large to be displayed.

The function LOG10 is similar, but always returns the common logarithm, meaning the logarithm for the base

10.

The following formulas return the same result, 2.

Math and Trig functions

EXP function

LOG function

LOG function

LOG10
 10/26/2021 • 2 minutes to read

 Syntax

LOG10(<number>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number A positive number for which you want the base-10
logarithm.

 Return value

 Remarks

 Example

= LOG(100,10)
= LOG(100)
= LOG10(100)

 See also

Returns the base-10 logarithm of a number.

A decimal number.

The LOG function lets you change the base of the logarithm, instead of using the base 10.

The following formulas return the same result, 2:

Math and Trig functions

EXP function

LOG function

LOG function

MOD
 10/26/2021 • 2 minutes to read

 Syntax

MOD(<number>, <divisor>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number The number for which you want to find the remainder after
the division is performed.

divisor The number by which you want to divide.

 Return value

 Remarks

 Example 1

= MOD(3,2)

 Example 2

= MOD(-3,-2)

 See also

Returns the remainder after a number is divided by a divisor. The result always has the same sign as the divisor.

A whole number.

If the divisor is 0 (zero), MOD returns an error. You cannot divide by 0.

The MOD function can be expressed in terms of the INT function: MOD(n, d) = n - d*INT(n/d)

The following formula returns 1, the remainder of 3 divided by 2.

The following formula returns -1, the remainder of 3 divided by 2. Note that the sign is always the same as the

sign of the divisor.

Math and Trig functions

ROUND function

ROUNDUP function

ROUNDDOWN function

MROUND function

INT function

MROUND
 10/26/2021 • 2 minutes to read

 Syntax

MROUND(<number>, <multiple>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number The number to round.

multiple The multiple of significance to which you want to round the
number.

 Return value

 Remarks

 Example: Decimal Places

= MROUND(1.3,0.2)

 Example: Negative Numbers

= MROUND(-10,-3)

 Example: Error

= MROUND(5,-2)

 See also

Returns a number rounded to the desired multiple.

A decimal number.

MROUND rounds up, away from zero, if the remainder of dividing numbernumber by the specified multiplemultiple is greater

than or equal to half the value of multiplemultiple.

The following expression rounds 1.3 to the nearest multiple of .2. The expected result is 1.4.

The following expression rounds -10 to the nearest multiple of -3. The expected result is -9.

The following expression returns an error, because the numbers have different signs.

Math and Trig functions

ROUND function

ROUNDUP function

ROUNDDOWN function

MROUND function

INT function

ODD
 10/26/2021 • 2 minutes to read

 Syntax

ODD(number)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number Required. The value to round.

 Return value

 Remarks

 Example

F O RM UL AF O RM UL A DESC RIP T IO NDESC RIP T IO N RESULTRESULT

= ODD(1.5) Rounds 1.5 up to the nearest odd
integer.

3

= ODD(3) Rounds 3 up to the nearest odd
integer.

3

= ODD(2) Rounds 2 up to the nearest odd
integer.

3

= ODD(-1) Rounds -1 up to the nearest odd
integer.

-1

= ODD(-2) Rounds -2 up (away from 0) to the
nearest odd integer.

-3

Returns number rounded up to the nearest odd integer.

Returns number rounded up to the nearest odd integer.

If number is nonnumeric, ODD returns the #VALUE! error value.

Regardless of the sign of number, a value is rounded up when adjusted away from zero. If number is an

odd integer, no rounding occurs.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

PI
 10/26/2021 • 2 minutes to read

 Syntax

PI()

 Return value

 Remarks

 Example

= PI()*([Radius]*2)

 See also

Returns the value of Pi, 3.14159265358979, accurate to 15 digits.

A decimal number with the value of Pi, 3.14159265358979, accurate to 15 digits.

Pi is a mathematical constant. In DAX, Pi is represented as a real number accurate to 15 digits, the same as Excel.

The following formula calculates the area of a circle given the radius in the column, [Radius] .

Math and Trig functions

POWER
 10/26/2021 • 2 minutes to read

 Syntax

POWER(<number>, <power>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number The base number, which can be any real number.

power The exponent to which the base number is raised.

 Return value

 Example

= POWER(5,2)

 See also

Returns the result of a number raised to a power.

A decimal number.

The following example returns 25.

Math and Trig functions

QUOTIENT
 10/26/2021 • 2 minutes to read

 Syntax

QUOTIENT(<numerator>, <denominator>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

numerator The dividend, or number to divide.

denominator The divisor, or number to divide by.

 Return value

 Remarks

 Example

= QUOTIENT(5,2)

= QUOTIENT(10/2,2)

 See also

Performs division and returns only the integer portion of the division result. Use this function when you want to

discard the remainder of division.

A whole number.

If either argument is non-numeric, QUOTIENT returns the #VALUE!#VALUE! error value.

You can use a column reference instead of a literal value for either argument. However, if the column that

you reference contains a 0 (zero), an error is returned for the entire column of values.

The following formulas return the same result, 2.

Math and Trig functions

RADIANS
 10/26/2021 • 2 minutes to read

 Syntax

RADIANS(angle)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

angle Required. An angle in degrees that you want to convert.

 Example

F O RM UL AF O RM UL A DESC RIP T IO NDESC RIP T IO N RESULTRESULT

= RADIANS(270) 270 degrees as radians (4.712389 or
3π/2 radians)

4.712389

Converts degrees to radians.

RAND
 10/26/2021 • 2 minutes to read

 Syntax

RAND()

 Return value

 Remarks

 Examples

= RAND()*(b-a)+a

= RAND()

= RAND()*100

Returns a random number greater than or equal to 0 and less than 1, evenly distributed. The number that is

returned changes each time the cell containing this function is recalculated.

A decimal number.

Recalculation depends on various factors, including whether the model is set to ManualManual or AutomaticAutomatic

recalculation mode, and whether data has been refreshed.

RAND and other volatile functions that do not have fixed values are not always recalculated. For example,

execution of a query or filtering will usually not cause such functions to be re-evaluated. However, the

results for these functions will be recalculated when the entire column is recalculated. These situations

include refresh from an external data source or manual editing of data that causes re-evaluation of

formulas that contain these functions.

RAND is always recalculated if the function is used in the definition of a measure.

RAND function cannot return a result of zero, to prevent errors such as division by zero.

To generate a random real number between two other numbers, use:

To generate a random number greater than 0 and less than 1:

To generate a random number greater than 0 and less than 100

To generate a random whole number greater than 0 and less than 100

INT(RAND()*100)

 See also
Math and Trig functions

Statistical functions

RANDBETWEEN
 10/26/2021 • 2 minutes to read

 Syntax

RANDBETWEEN(<bottom>,<top>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

Bottom The smallest integer the function will return.

Top The largest integer the function will return.

 Return value

 Remarks

 Example

= RANDBETWEEN(1,10)

 See also

Returns a random number in the range between two numbers you specify.

A whole number.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-level

security (RLS) rules.

The following formula returns a random number between 1 and 10.

Math and Trig functions

Statistical functions

ROUND
 10/26/2021 • 2 minutes to read

 Syntax

ROUND(<number>, <num_digits>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number The number you want to round.

num_digits The number of digits to which you want to round. A
negative value rounds digits to the left of the decimal point;
a value of zero rounds to the nearest integer.

 Return value

 Remarks

 Example 1

= ROUND(2.15,1)

 Example 2

Rounds a number to the specified number of digits.

A decimal number.

If num_digitsnum_digits is greater than 0 (zero), then number is rounded to the specified number of decimal

places.

If num_digitsnum_digits is 0, the number is rounded to the nearest integer.

If num_digitsnum_digits is less than 0, the number is rounded to the left of the decimal point.

Related functions

To always round up (away from zero), use the ROUNDUP function.

To always round down (toward zero), use the ROUNDDOWN function.

To round a number to a specific multiple (for example, to round to the nearest multiple of 0.5), use the

MROUND function.

Use the functions TRUNC and INT to obtain the integer portion of the number.

The following formula rounds 2.15 up, to one decimal place. The expected result is 2.2.

The following formula rounds 21.5 to one decimal place to the left of the decimal point. The expected result is

= ROUND(21.5,-1)

 See also

20.

Math and Trig functions

ROUND

ROUNDDOWN

MROUND

INT

TRUNC

ROUNDDOWN
 10/26/2021 • 2 minutes to read

 Syntax

ROUNDDOWN(<number>, <num_digits>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number A real number that you want rounded down.

num_digits The number of digits to which you want to round. Negative
rounds to the left of the decimal point; zero to the nearest
integer.

 Return value

 Remarks

 Example 1

= ROUNDDOWN(3.14159,3)

 Example 2

= ROUNDDOWN(31415.92654, -2)

Rounds a number down, toward zero.

A decimal number.

If num_digitsnum_digits is greater than 0 (zero), then the value in numbernumber is rounded down to the specified

number of decimal places.

If num_digitsnum_digits is 0, then the value in numbernumber is rounded down to the nearest integer.

If num_digitsnum_digits is less than 0, then the value in numbernumber is rounded down to the left of the decimal point.

ROUNDDOWN behaves like ROUND, except that it always rounds a number down. The INT function also

rounds down, but with INT the result is always an integer, whereas with ROUNDDOWN you can control

the precision of the result.

The following example rounds 3.14159 down to three decimal places. The expected result is 3.141.

The following example rounds the value of 31415.92654 down to 2 decimal places to the left of the decimal. The

expected result is 31400.

 See also
Math and Trig functions

ROUND

ROUNDUP

ROUNDDOWN

MROUND

INT

ROUNDUP
 10/26/2021 • 2 minutes to read

 Syntax

ROUNDUP(<number>, <num_digits>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number A real number that you want to round up.

num_digits The number of digits to which you want to round. A
negative value for num_digitsnum_digits rounds to the left of the
decimal point; if num_digitsnum_digits is zero or is omitted, numbernumber
is rounded to the nearest integer.

 Return value

 Remarks

 Example

= ROUNDUP(PI(),4)

 Example: Decimals as Second Argument

= ROUNDUP(1.3,0.2)

 Example: Negative Number as Second Argument

Rounds a number up, away from 0 (zero).

A decimal number.

If num_digitsnum_digits is greater than 0 (zero), then the number is rounded up to the specified number of decimal

places.

If num_digitsnum_digits is 0, then number is rounded up to the nearest integer.

If num_digitsnum_digits is less than 0, then number is rounded up to the left of the decimal point.

ROUNDUP behaves like ROUND, except that it always rounds a number up.

The following formula rounds Pi to four decimal places. The expected result is 3.1416.

The following formula rounds 1.3 to the nearest multiple of 0.2. The expected result is 2.

= ROUNDUP([Values],-1)

F RE IGH TC O STF RE IGH TC O ST EXP EC T ED RESULTEXP EC T ED RESULT

13.25 20

2.45 10

25.56 30

1.34 10

345.01 350

 See also

The following formula rounds the value in the column, FreightCostFreightCost, with the expected results shown in the

following table:

When num_digitsnum_digits is less than zero, the number of places to the left of the decimal sign is increased by the

value you specify.

Math and Trig functions

ROUND

ROUNDDOWN

MROUND

INT

SIGN
 10/26/2021 • 2 minutes to read

 Syntax

SIGN(<number>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number Any real number, a column that contains numbers, or an
expression that evaluates to a number.

 Return value

RET URN VA L UERET URN VA L UE DESC RIP T IO NDESC RIP T IO N

1 The number is positive

0 The number is zero

-1 The number is negative

 Example

= SIGN(([Sale Price] - [Cost]))

 See also

Determines the sign of a number, the result of a calculation, or a value in a column. The function returns 1 if the

number is positive, 0 (zero) if the number is zero, or -1 if the number is negative.

A whole number. The possible Return values are 1, 0, and -1.

The following formula returns the sign of the result of the expression that calculates sale price minus cost.

Math and Trig functions

SIN
 10/26/2021 • 2 minutes to read

 Syntax

SIN(number)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number Required. The angle in radians for which you want the sine.

 Return value

 Remarks

 Example

F O RM UL AF O RM UL A DESC RIP T IO NDESC RIP T IO N RESULTRESULT

= SIN(PI()) Sine of pi radians (0, approximately). 0.0

= SIN(PI()/2) Sine of pi/2 radians. 1.0

= SIN(30*PI()/180) Sine of 30 degrees. 0.5

= SIN(RADIANS(30)) Sine of 30 degrees. 0.5

Returns the sine of the given angle.

Returns the sine of the given angle.

If an argument is in degrees, multiply it by PI()/180 or use the RADIANS function to convert it to radians.

SINH
 10/26/2021 • 2 minutes to read

 Syntax

SINH(number)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number Required. Any real number.

 Return value

 Remarks

 Example

= 2.868*SINH(0.0342*1.03)

Returns the hyperbolic sine of a number.

Returns the hyperbolic sine of a number.

The formula for the hyperbolic sine is:

$$\text{SINH}(z) = \frac{e^{z} - e^{-z}}{2}$$

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

Probability of obtaining a result of less than 1.03 seconds.

Returns, 0.1010491

SQRT
 10/26/2021 • 2 minutes to read

 Syntax

SQRT(<number>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number The number for which you want the square root, a column
that contains numbers, or an expression that evaluates to a
number.

 Return value

 Remarks

 Example

= SQRT(25)

 See also

Returns the square root of a number.

A decimal number.

If the number is negative, the SQRT function returns an error.

The following formula,

Math and Trig functions

SQRTPI
 10/26/2021 • 2 minutes to read

 Syntax

SQRTPI(number)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number Required. The number by which pi is multiplied.

 Return value

 Example

F O RM UL AF O RM UL A DESC RIP T IO NDESC RIP T IO N RESULTRESULT

= SQRTPI(1) Square root of pi. 1.772454

= SQRTPI(2) Square root of 2 * pi. 2.506628

Returns the square root of (number * pi).

Returns the square root of (number * pi).

TAN
 10/26/2021 • 2 minutes to read

 Syntax

TAN(number)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number Required. The angle in radians for which you want the
tangent.

 Return value

 Remarks

 Example

F O RM UL AF O RM UL A DESC RIP T IO NDESC RIP T IO N RESULTRESULT

= TAN(0.785) Tangent of 0.785 radians (0.99920) 0.99920

= TAN(45*PI()/180) Tangent of 45 degrees (1) 1

= TAN(RADIANS(45)) Tangent of 45 degrees (1) 1

Returns the tangent of the given angle.

Returns the tangent of the given angle.

If your argument is in degrees, multiply it by PI()/180 or use the RADIANS function to convert it to radians.

TANH
 10/26/2021 • 2 minutes to read

 Syntax

TANH(number)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number Required. Any real number.

 Return value

 Remarks

 Example

F O RM UL AF O RM UL A DESC RIP T IO NDESC RIP T IO N RESULTRESULT

= TANH(-2) Hyperbolic tangent of -2 (-0.96403) -0.964028

= TANH(0) Hyperbolic tangent of 0 (0) 0

= TANH(0.5) Hyperbolic tangent of 0.5 (0.462117) 0.462117

Returns the hyperbolic tangent of a number.

Returns the hyperbolic tangent of a number.

The formula for the hyperbolic tangent is:

$$\text{TANH}(z) = \frac{\text{SINH}(z)}{\text{COSH}(z)}$$

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

TRUNC
 10/26/2021 • 2 minutes to read

 Syntax

TRUNC(<number>,<num_digits>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number The number you want to truncate.

num_digits A number specifying the precision of the truncation; if
omitted, 0 (zero)

 Return value

 Remarks

 Example 1

= TRUNC(PI())

 Example 2

= TRUNC(-8.9)

 See also

Truncates a number to an integer by removing the decimal, or fractional, part of the number.

A whole number.

TRUNC and INT are similar in that both return integers. TRUNC removes the fractional part of the number. INT

rounds numbers down to the nearest integer based on the value of the fractional part of the number. INT and

TRUNC are different only when using negative numbers: TRUNC(-4.3) returns -4, but INT(-4.3) returns -5

because -5 is the smaller number.

The following formula returns 3, the integer part of pi.

The following formula returns -8, the integer part of -8.9.

Math and Trig functions

ROUND

ROUNDUP

ROUNDDOWN

MROUND

INT

Other functions
 10/26/2021 • 2 minutes to read

 In this category

F UN C T IO NF UN C T IO N DESC RIP T IO NDESC RIP T IO N

BLANK Returns a blank.

ERROR Raises an error with an error message.

These functions perform unique actions that cannot be defined by any of the categories.

BLANK
 10/26/2021 • 2 minutes to read

 Syntax

BLANK()

 Return value

 Remarks

 Example

= IF(SUM(InternetSales_USD[SalesAmount_USD])= 0 , BLANK() ,
SUM(ResellerSales_USD[SalesAmount_USD])/SUM(InternetSales_USD[SalesAmount_USD]))

RO W L A B EL SRO W L A B EL S A C C ESSO RIESA C C ESSO RIES B IKESB IKES C LOT H IN GC LOT H IN G GRA N D TOTA LGRA N D TOTA L

2005 2.65 2.89

2006 3.33 4.03

2007 1.04 2.92 6.63 3.51

2008 0.41 1.53 2.00 1.71

Grand Total 0.83 2.51 5.45 2.94

Returns a blank.

A blank.

Blanks are not equivalent to nulls. DAX uses blanks for both database nulls and for blank cells in Excel.

Some DAX functions treat blank cells somewhat differently from Microsoft Excel. Blanks and empty

strings ("") are not always equivalent, but some operations may treat them as such.

The following example illustrates how you can work with blanks in formulas. The formula calculates the ratio of

sales between the Resellers and the Internet channels. However, before attempting to calculate the ratio the

denominator should be checked for zero values. If the denominator is zero then a blank value should be

returned; otherwise, the ratio is calculated.

The table shows the expected results when this formula is used to create a table visualization.

In the original data source, the column evaluated by the BLANK function might have included text, empty

strings, or nulls. If the original data source was a SQL Server database, nulls and empty strings are different

kinds of data. However, for this operation an implicit type cast is performed and DAX treats them as the same.

See also
Text functions

ISBLANK function

ERROR
 10/26/2021 • 2 minutes to read

 Syntax

ERROR(<text>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

text A text string containing an error message.

 Return value

 Remarks

 Example 1

DEFINE
MEASURE DimProduct[Measure] =
 IF(
 SELECTEDVALUE(DimProduct[Color]) = "Red",
 ERROR("red color encountered"),
 SELECTEDVALUE(DimProduct[Color])
)
EVALUATE SUMMARIZECOLUMNS(DimProduct[Color], "Measure", [Measure])
ORDER BY [Color]

 Example 2

Raises an error with an error message.

None

The ERROR function can be placed in a DAX expression anywhere a scalar value is expected.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query:

Fails and raises and error message containing "red color encountered".

The following DAX query:

DEFINE
MEASURE DimProduct[Measure] =
 IF(
 SELECTEDVALUE(DimProduct[Color]) = "Magenta",
 ERROR("magenta color encountered"),
 SELECTEDVALUE(DimProduct[Color])
)
EVALUATE SUMMARIZECOLUMNS(DimProduct[Color], "Measure", [Measure])
ORDER BY [Color]

DIM P RO DUC T [C O LO R]DIM P RO DUC T [C O LO R] [M EA SURE][M EA SURE]

Black Black

Blue Blue

Grey Grey

Multi Multi

NA NA

Red Red

Silver Silver

Silver\Black Silver\Black

White White

Yellow Yellow

Returns the following table:

Because Magenta is not one of the product colors, the ERROR function is not executed.

Parent and Child functions
 10/26/2021 • 2 minutes to read

 In this category

F UN C T IO NF UN C T IO N DESC RIP T IO NDESC RIP T IO N

PATH Returns a delimited text string with the identifiers of all the
parents of the current identifier.

PATHCONTAINS Returns TRUE if the specified item exists within the specified
path.

PATHITEM Returns the item at the specified position from a string
resulting from evaluation of a PATH function.

PATHITEMREVERSE Returns the item at the specified position from a string
resulting from evaluation of a PATH function.

PATHLENGTH Returns the number of parents to the specified item in a
given PATH result, including self.

These functions manage data that is presented as parent/child hierarchies. To learn more, see Understanding

functions for Parent-Child Hierarchies in DAX.

Understanding functions for parent-child hierarchies
in DAX

 10/26/2021 • 3 minutes to read

 Parent-child functions in DAX

EM P LO Y EEKEYEM P LO Y EEKEY PA REN T EM P LO Y EEKEYPA REN T EM P LO Y EEKEY

112

14 112

3 14

11 3

13 3

162 3

117 162

221 162

81 162

EM P LO Y EEKEYEM P LO Y EEKEY PA REN T EM P LO Y EEKEYPA REN T EM P LO Y EEKEY PAT HPAT H

112 112

DAX provides five functions to help users manage data that is presented as a parent-child hierarchy in their

models. With this functions a user can obtain the entire lineage of parents a row has, how many levels has the

lineage to the top parent, who is the parent n-levels above the current row, who is the n-descendant from the

top of the current row hierarchy and is certain parent a parent in the current row hierarchy?

The following table contains a Parent-Child hierarchy on the columns: EmployeeKeyEmployeeKey and ParentEmployeeKeyParentEmployeeKey

that is used in all the functions examples.

In the above table you can see that employee 112 has no parent defined, employee 14 has employee 112 as

manager (ParentEmployeeKey), employee 3 has employee 14 as manager and employees 11, 13, and 162 have

employee 3 as manager. The above helps to understand that employee 112 has no manager above her/him and

she/he is the top manager for all employees shown here; also, employee 3 reports to employee 14 and

employees 11, 13, 162 report to 3.

The following table presents the available functions, a brief description of the function and an example of the

function over the same data shown above.

PATH function - Returns a delimited text with the identifiers of all the parents to the current row, starting with the

oldest or top most until current.

14 112 112|14

3 14 112|14|3

11 3 112|14|3|11

13 3 112|14|3|13

162 3 112|14|3|162

117 162 112|14|3|162|117

221 162 112|14|3|162|221

81 162 112|14|3|162|81

EM P LO Y EEKEYEM P LO Y EEKEY PA REN T EM P LO Y EEKEYPA REN T EM P LO Y EEKEY PAT HPAT H

EM P LO Y EEKEYEM P LO Y EEKEY PA REN T EM P LO Y EEKEYPA REN T EM P LO Y EEKEY PAT HPAT H PAT H L EN GT HPAT H L EN GT H

112 112 1

14 112 112|14 2

3 14 112|14|3 3

11 3 112|14|3|11 4

13 3 112|14|3|13 4

162 3 112|14|3|162 4

117 162 112|14|3|162|117 5

221 162 112|14|3|162|221 5

81 162 112|14|3|162|81 5

EM P LO Y EEKEYEM P LO Y EEKEY PA REN T EM P LO Y EEKEYPA REN T EM P LO Y EEKEY PAT HPAT H
PAT H IT EM - 4T H F RO MPAT H IT EM - 4T H F RO M
L EF TL EF T

112 112

14 112 112|14

PATHLENGTH function - Returns the number of levels in a given PATH(), starting at current level until the oldest

or top most parent level. In the following example column PathLength is defined as ' = PATHLENGTH([Path]) '; the

example includes all data from the Path() example to help understand how this function works.

PATHITEM function - Returns the item at the specified position from a PATH() like result, counting from left to

right. In the following example column PathItem - 4th from left is defined as ' = PATHITEM([Path], 4) '; this

example returns the EmployeKey at fourth position in the Path string from the left, using the same sample data

from the Path() example.

3 14 112|14|3

11 3 112|14|3|11 11

13 3 112|14|3|13 13

162 3 112|14|3|162 162

117 162 112|14|3|162|117 162

221 162 112|14|3|162|221 162

81 162 112|14|3|162|81 162

EM P LO Y EEKEYEM P LO Y EEKEY PA REN T EM P LO Y EEKEYPA REN T EM P LO Y EEKEY PAT HPAT H
PAT H IT EM - 4T H F RO MPAT H IT EM - 4T H F RO M
L EF TL EF T

EM P LO Y EEKEYEM P LO Y EEKEY PA REN T EM P LO Y EEKEYPA REN T EM P LO Y EEKEY PAT HPAT H
PAT H IT EM REVERSE - 3RDPAT H IT EM REVERSE - 3RD
F RO M RIGH TF RO M RIGH T

112 112

14 112 112|14

3 14 112|14|3 112

11 3 112|14|3|11 14

13 3 112|14|3|13 14

162 3 112|14|3|162 14

117 162 112|14|3|162|117 3

221 162 112|14|3|162|221 3

81 162 112|14|3|162|81 3

PATHITEMREVERSE function - Returns the item at position from a PATH() like function result, counting backwards

from right to left.

In the following example column PathItemReverse - 3rd from right is defined as ' = PATHITEMREVERSE([Path], 3) ';

this example returns the EmployeKey at third position in the Path string from the right, using the same sample

data from the Path() example.

PATHCONTAINS function - Returns TRUETRUE if the specified item exists within the specified path. In the following

example column PathContains - employee 162 is defined as ' = PATHCONTAINS([Path], "162") '; this example

returns TRUETRUE if the given path contains employee 162. This example uses the results from the Path() example

above.

EM P LO Y EEKEYEM P LO Y EEKEY PA REN T EM P LO Y EEKEYPA REN T EM P LO Y EEKEY PAT HPAT H
PAT H C O N TA IN S -PAT H C O N TA IN S -
EM P LO Y EE 162EM P LO Y EE 162

112 112 FALSE

14 112 112|14 FALSE

3 14 112|14|3 FALSE

11 3 112|14|3|11 FALSE

13 3 112|14|3|13 FALSE

162 3 112|14|3|162 TRUE

117 162 112|14|3|162|117 TRUE

PATH
 10/26/2021 • 2 minutes to read

 Syntax

PATH(<ID_columnName>, <parent_columnName>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

ID_columnName The name of an existing column containing the unique
identifier for rows in the table. This cannot be an expression.
The data type of the value in ID_columnName must be text
or integer, and must also be the same data type as the
column referenced in parent_columnName.

parent_columnName The name of an existing column containing the unique
identifier for the parent of the current row. This cannot be an
expression. The data type of the value in
parent_columnName data type must be text or integer, and
must be the same data type as the value in ID_columnName.

 Return value

 Remarks

Returns a delimited text string with the identifiers of all the parents of the current identifier, starting with the

oldest and continuing until current.

A delimited text string containing the identifiers of all the parents to the current identifier.

This function is used in tables that have some kind of internal hierarchy, to return the items that are

related to the current row value. For example, in an Employees table that contains employees, the

managers of employees, and the managers of the managers, you can return the path that connects an

employee to his or her manager.

The path is not constrained to a single level of parent-child relationships; it can return related rows that

are several levels up from the specified starting row.

The delimiter used to separate the ascendants is the vertical bar, '|'.

The values in ID_columnName and parent_columnName must have the same data type, text or integer.

Values in parent_columnName must be present in ID_columnName. That is, you cannot look up a

parent if there is no value at the child level.

If parent_columnName is BLANK then PATH() returns ID_columnName value. In other words, if you

look for the manager of an employee but the parent_columnName column has no data, the PATH

function returns just the employee ID.

If ID_columnName has duplicates and parent_columnName is the same for those duplicates then

PATH() returns the common parent_columnName value; however, if parent_columnName value is

different for those duplicates then PATH() returns an error. In other words, if you have two listings for

 Example

= PATH(Employee[EmployeeKey], Employee[ParentEmployeeKey])

the same employee ID and they have the same manager ID, the PATH function returns the ID for that

manager. However, if there are two identical employee IDs that have different manager IDs, the PATH

function returns an error.

If ID_columnName is BLANK then PATH() returns BLANK.

If ID_columnName contains a vertical bar '|' then PATH() returns an error.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following example creates a calculated column that lists all the managers for each employee.

PATHCONTAINS
 10/26/2021 • 2 minutes to read

 Syntax

PATHCONTAINS(<path>, <item>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

path A string created as the result of evaluating a PATH function.

item A text expression to look for in the path result.

 Return value

 Remarks

 Example

= PATHCONTAINS(PATH(Employee[EmployeeKey], Employee[ParentEmployeeKey]), "23")

Returns TRUETRUE if the specified item exists within the specified path.

A value of TRUETRUE if item exists in path; otherwise FALSEFALSE.

If item is an integer number it is converted to text and then the function is evaluated. If conversion fails

then the function returns an error.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following example creates a calculated column that takes a manager ID and checks a set of employees. If the

manager ID is among the list of managers returned by the PATH function, the PATHCONTAINS function returns

true; otherwise it returns false.

PATHITEM
 10/26/2021 • 2 minutes to read

 Syntax

PATHITEM(<path>, <position>[, <type>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

path A text string in the form of the results of a PATH function.

position An integer expression with the position of the item to be
returned.

type (Optional)An enumeration that defines the data type of the
result:

 type enumerationtype enumeration

EN UM ERAT IO NEN UM ERAT IO N A LT ERN AT E EN UM ERAT IO NA LT ERN AT E EN UM ERAT IO N DESC RIP T IO NDESC RIP T IO N

TEXT 0 Results are returned with the data type
text. (default).

INTEGER 1 Results are returned as integers.

 Return value

 Remarks

 Example

Returns the item at the specified position from a string resulting from evaluation of a PATH function. Positions

are counted from left to right.

The identifier returned by the PATH function at the specified position in the list of identifiers. Items returned by

the PATH function are ordered by most distant to current.

This function can be used to return a specific level from a hierarchy returned by a PATH function. For

example, you could return just the skip-level managers for all employees.

If you specify a number for position that is less than one (1) or greater than the number of elements in

path, the PATHITEM function returns BLANK

If type is not a valid enumeration element an error is returned.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

= PATHITEM(PATH(Employee[EmployeeKey], Employee[ParentEmployeeKey]), 3, 1)

The following example returns the third tier manager of the current employee; it takes the employee and

manager IDs as the input to a PATH function that returns a string with the hierarchy of parents to current

employee. From that string PATHITEM returns the third entry as an integer.

PATHITEMREVERSE
 10/26/2021 • 2 minutes to read

 Syntax

PATHITEMREVERSE(<path>, <position>[, <type>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

path A text string resulting from evaluation of a PATH function.

position An integer expression with the position of the item to be
returned. Position is counted backwards from right to left.

type (Optional)An enumeration that defines the data type of the
result:

 type enumerationtype enumeration

EN UM ERAT IO NEN UM ERAT IO N A LT ERN AT E EN UM ERAT IO NA LT ERN AT E EN UM ERAT IO N DESC RIP T IO NDESC RIP T IO N

TEXT 0 Results are returned with the data type
text. (default).

INTEGER 1 Results are returned as integers.

 Return value

 Remarks

Returns the item at the specified position from a string resulting from evaluation of a PATH function. Positions

are counted backwards from right to left.

The n-position ascendant in the given path, counting from current to the oldest.

This function can be used to get an individual item from a hierarchy resulting from a PATH function.

This function reverses the standard order of the hierarchy, so that closest items are listed first, For

example, if the PATh function returns a list of managers above an employee in a hierarchy, the

PATHITEMREVERSE function returns the employee's immediate manager in position 2 because position 1

contains the employee's id.

If the number specified for position is less than one (1) or greater than the number of elements in path,

the PATHITEM function returns BLANK.

If type is not a valid enumeration element an error is returned.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

 Example

= PATHITEMREVERSE(PATH(Employee[EmployeeKey], Employee[ParentEmployeeKey]), 3, 1)

The following example takes an employee ID column as the input to a PATH function, and reverses the list of

grandparent elements that are returned. The position specified is 3 and the return type is 1; therefore, the

PATHITEMREVERSE function returns an integer representing the manager two levels up from the employee.

PATHLENGTH
 10/26/2021 • 2 minutes to read

 Syntax

PATHLENGTH(<path>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

path A text expression resulting from evaluation of a PATH
function.

 Return value

 Remarks

 Example

= PATHLENGTH(PATH(Employee[EmployeeKey], Employee[ParentEmployeeKey]))

Returns the number of parents to the specified item in a given PATH result, including self.

The number of items that are parents to the specified item in a given PATH result, including the specified item.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-level

security (RLS) rules.

The following example takes an employee ID as input to a PATH function and returns a list of the managers

above that employee in the hierarchy, The PATHLENGTH function takes that result and counts the different levels

of employees and managers, including the employee you started with.

Relationship functions
 10/26/2021 • 2 minutes to read

 In this category

F UN C T IO NF UN C T IO N DESC RIP T IO NDESC RIP T IO N

CROSSFILTER Specifies the cross-filtering direction to be used in a
calculation for a relationship that exists between two
columns.

RELATED Returns a related value from another table.

RELATEDTABLE Evaluates a table expression in a context modified by the
given filters.

USERELATIONSHIP Specifies the relationship to be used in a specific calculation
as the one that exists between columnName1 and
columnName2.

Functions in this category are for managing and utilizing relationships between tables.

CROSSFILTER
 10/26/2021 • 2 minutes to read

 Syntax

CROSSFILTER(<columnName1>, <columnName2>, <direction>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

columnName1 The name of an existing column, using standard DAX syntax
and fully qualified, that usually represents the many side of
the relationship to be used; if the arguments are given in
reverse order the function will swap them before using them.
This argument cannot be an expression.

columnName2 The name of an existing column, using standard DAX syntax
and fully qualified, that usually represents the one side or
lookup side of the relationship to be used; if the arguments
are given in reverse order the function will swap them before
using them. This argument cannot be an expression.

Direction The cross-filter direction to be used. Must be one of the
following:

NoneNone - No cross-filtering occurs along this relationship.

BothBoth - Filters on either side filters the other side.

OneWayOneWay - Filters on the one side or the lookup side of a
relationship filter the other side. This option cannot be used
with a one-to-one relationship . Don’t use this option on a
many-to-many relationship because it is unclear which side
is the lookup side; use OneWay_LeftFiltersRight or
OneWay_RightFiltersLeft instead.

OneWay_LeftFiltersRightOneWay_LeftFiltersRight - Filters on the side of
<columnName1> filter the side of <columnName2>. This
option cannot be used with a one-to-one or many-to-one
relationship.

OneWay_RightFiltersLeftOneWay_RightFiltersLeft - Filters on the side of
<columnName2> filter the side of <columnName1>. This
option cannot be used with a one-to-one or many-to-one
relationship.

 Return value

Specifies the cross-filtering direction to be used in a calculation for a relationship that exists between two

columns.

The function returns no value; the function only sets the cross-filtering direction for the indicated relationship,

for the duration of the query.

 Remarks

 Example

In the case of a 1:1 relationship, there is no difference between the one and both direction.

CROSSFILTER can only be used in functions that take a filter as an argument, for example: CALCULATE,

CALCULATETABLE, CLOSINGBALANCEMONTH, CLOSINGBALANCEQUARTER, CLOSINGBALANCEYEAR,

OPENINGBALANCEMONTH, OPENINGBALANCEQUARTER, OPENINGBALANCEYEAR, TOTALMTD,

TOTALQTD and TOTALYTD functions.

CROSSFILTER uses existing relationships in the model, identifying relationships by their ending point

columns.

In CROSSFILTER, the cross-filtering setting of a relationship is not important; that is, whether the

relationship is set to filter one, or both directions in the model does not affect the usage of the function.

CROSSFILTER will override any existing cross-filtering setting.

An error is returned if any of the columns named as an argument is not part of a relationship or the

arguments belong to different relationships.

If CALCULATE expressions are nested, and more than one CALCULATE expression contains a

CROSSFILTER function, then the innermost CROSSFILTER is the one that prevails in case of a conflict or

ambiguity.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

In the following model diagram, both DimProduct and DimDate have a single direction relationship with

FactOnlineSales.

By default, we cannot get the Count of Products sold by year :

BiDi:= CALCULATE([Distinct Count of ProductKey], CROSSFILTER(FactInternetSales[ProductKey],
DimProduct[ProductKey] , Both))

There are two ways to get the count of products by year :

Turn on bi-directional cross-filtering on the relationship. This will change how filters work for all data

between these two tables.

Use the CROSSFILTER function to change how the relationships work for just this measure.

When using DAX, we can use the CROSSFILTER function to change how the cross-filter direction behaves

between two columns defined by a relationship. In this case, the DAX expression looks like this:

By using the CROSSFILTER function in our measure expression, we get the expected results:

RELATED
 10/26/2021 • 2 minutes to read

 Syntax

RELATED(<column>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

column The column that contains the values you want to retrieve.

 Return value

 Remarks

 Example

Returns a related value from another table.

A single value that is related to the current row.

The RELATED function requires that a relationship exists between the current table and the table with

related information. You specify the column that contains the data that you want, and the function follows

an existing many-to-one relationship to fetch the value from the specified column in the related table. If a

relationship does not exist, you must create a relationship.

When the RELATED function performs a lookup, it examines all values in the specified table regardless of

any filters that may have been applied.

The RELATED function needs a row context; therefore, it can only be used in calculated column

expression, where the current row context is unambiguous, or as a nested function in an expression that

uses a table scanning function. A table scanning function, such as SUMX, gets the value of the current row

value and then scans another table for instances of that value.

The RELATED function cannot be used to fetch a column across a limited relationship.

In the following example, the measure Non USA Internet Sales is created to produce a sales report that excludes

sales in the United States. In order to create the measure, the InternetSales_USD table must be filtered to exclude

all sales that belong to the United States in the SalesTerritory table. The United States, as a country, appears 5

times in the SalesTerritory table; once for each of the following regions: Northwest, Northeast, Central,

Southwest, and Southeast.

The first approach to filter the Internet Sales, in order to create the measure, could be to add a filter expression

like the following:

https://docs.microsoft.com/en-us/power-bi/transform-model/desktop-relationships-understand#limited-relationships

FILTER('InternetSales_USD'
, 'InternetSales_USD'[SalesTerritoryKey]<>1 && 'InternetSales_USD'[SalesTerritoryKey]<>2 &&
'InternetSales_USD'[SalesTerritoryKey]<>3 && 'InternetSales_USD'[SalesTerritoryKey]<>4 &&
'InternetSales_USD'[SalesTerritoryKey]<>5)

FILTER('InternetSales_USD', RELATED('SalesTerritory'[SalesTerritoryCountry])<>"United States")

NOTENOTE

= SUMX(FILTER('InternetSales_USD'
 , RELATED('SalesTerritory'[SalesTerritoryCountry])
 <>"United States"
)
 ,'InternetSales_USD'[SalesAmount_USD])

RO W L A B EL SRO W L A B EL S IN T ERN ET SA L ESIN T ERN ET SA L ES N O N USA IN T ERN ET SA L ESN O N USA IN T ERN ET SA L ES

Australia $4,999,021.84 $4,999,021.84

Canada $1,343,109.10 $1,343,109.10

France $2,490,944.57 $2,490,944.57

Germany $2,775,195.60 $2,775,195.60

United Kingdom $5,057,076.55 $5,057,076.55

United States $9,389,479.79

Grand Total $26,054,827.45 $16,665,347.67

RO W L A B EL SRO W L A B EL S A C C ESSO RIESA C C ESSO RIES B IKESB IKES C LOT H IN GC LOT H IN G GRA N D TOTA LGRA N D TOTA L

2005 $1,526,481.95 $1,526,481.95

However, this approach is counterintuitive, prone to typing errors, and might not work if any of the existing

regions is split in the future.

A better approach would be to use the existing relationship between InternetSales_USD and SalesTerritory and

explicitly state that the country must be different from the United States. To do so, create a filter expression like

the following:

This expression uses the RELATED function to lookup the country value in the SalesTerritory table, starting with

the value of the key column, SalesTerritoryKey, in the InternetSales_USD table. The result of the lookup is used

by the filter function to determine if the InternetSales_USD row is filtered or not.

If the example does not work, you might need to create a relationship between the tables.

The following table shows only totals for each region, to prove that the filter expression in the measure, Non

USA Internet Sales, works as intended.

The following shows what that you might get if you used this measure in a report table visual:

2006 $3,554,744.04 $3,554,744.04

2007 $156,480.18 $5,640,106.05 $70,142.77 $5,866,729.00

2008 $228,159.45 $5,386,558.19 $102,675.04 $5,717,392.68

Grand Total $384,639.63 $16,107,890.23 $172,817.81 $16,665,347.67

RO W L A B EL SRO W L A B EL S A C C ESSO RIESA C C ESSO RIES B IKESB IKES C LOT H IN GC LOT H IN G GRA N D TOTA LGRA N D TOTA L

 See also
RELATEDTABLE

Filter functions

RELATEDTABLE
 10/26/2021 • 2 minutes to read

 Syntax

RELATEDTABLE(<tableName>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

tableName The name of an existing table using standard DAX syntax. It
cannot be an expression.

 Return value

 Remarks

 Example

= SUMX(RELATEDTABLE('InternetSales_USD')
 , [SalesAmount_USD])

P RO DUC T C AT EGO RY KEYP RO DUC T C AT EGO RY KEY
P RO DUC T C AT EGO RYP RO DUC T C AT EGO RY
A LT ERN AT EKEYA LT ERN AT EKEY

P RO DUC T C AT EGO RYP RO DUC T C AT EGO RY
N A M EN A M E IN T ERN ET SA L ESIN T ERN ET SA L ES

1 1 Bikes $28,318,144.65

2 2 Components

3 3 Clothing $339,772.61

Evaluates a table expression in a context modified by the given filters.

A table of values.

The RELATEDTETABLE function changes the context in which the data is filtered, and evaluates the

expression in the new context that you specify.

This function is a shortcut for CALCULATETABLE function with no logical expression.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following example uses the RELATEDTABLE function to create a calculated column with the Internet Sales in

the Product Category table:

The following table shows the results:

4 4 Accessories $700,759.96

P RO DUC T C AT EGO RY KEYP RO DUC T C AT EGO RY KEY
P RO DUC T C AT EGO RYP RO DUC T C AT EGO RY
A LT ERN AT EKEYA LT ERN AT EKEY

P RO DUC T C AT EGO RYP RO DUC T C AT EGO RY
N A M EN A M E IN T ERN ET SA L ESIN T ERN ET SA L ES

 See also
CALCULATETABLE

Filter functions

USERELATIONSHIP
 10/26/2021 • 2 minutes to read

 Syntax

USERELATIONSHIP(<columnName1>,<columnName2>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

columnName1 The name of an existing column, using standard DAX syntax
and fully qualified, that usually represents the many side of
the relationship to be used; if the arguments are given in
reverse order the function will swap them before using them.
This argument cannot be an expression.

columnName2 The name of an existing column, using standard DAX syntax
and fully qualified, that usually represents the one side or
lookup side of the relationship to be used; if the arguments
are given in reverse order the function will swap them before
using them. This argument cannot be an expression.

 Return value

 Remarks

Specifies the relationship to be used in a specific calculation as the one that exists between columnName1 and

columnName2.

The function returns no value; the function only enables the indicated relationship for the duration of the

calculation.

USERELATIONSHIP can only be used in functions that take a filter as an argument, for example:

CALCULATE, CALCULATETABLE, CLOSINGBALANCEMONTH, CLOSINGBALANCEQUARTER,

CLOSINGBALANCEYEAR, OPENINGBALANCEMONTH, OPENINGBALANCEQUARTER,

OPENINGBALANCEYEAR, TOTALMTD, TOTALQTD and TOTALYTD functions.

USERELATIONSHIP cannot be used when row level security is defined for the table in which the measure

is included. For example,
CALCULATE(SUM([SalesAmount]), USERELATIONSHIP(FactInternetSales[CustomerKey],
DimCustomer[CustomerKey]))

will return an error if row level security is defined for DimCustomer.

USERELATIONSHIP uses existing relationships in the model, identifying relationships by their ending

point columns.

In USERELATIONSHIP, the status of a relationship is not important; that is, whether the relationship is

active or not does not affect the usage of the function. Even if the relationship is inactive, it will be used

and overrides any other active relationships that might be present in the model but not mentioned in the

function arguments.

 Example

= CALCULATE(SUM(InternetSales[SalesAmount]), USERELATIONSHIP(InternetSales[ShippingDate], DateTime[Date]))

An error is returned if any of the columns named as an argument is not part of a relationship or the

arguments belong to different relationships.

If multiple relationships are needed to join table A to table B in a calculation, each relationship must be

indicated in a different USERELATIONSHIP function.

If CALCULATE expressions are nested, and more than one CALCULATE expression contains a

USERELATIONSHIP function, then the innermost USERELATIONSHIP is the one that prevails in case of a

conflict or ambiguity.

Up to 10 USERELATIONSHIP functions can be nested; however, your expression might have a deeper level

of nesting, ie. the following sample expression is nested 3 levels deep but only 2 for USEREALTIONSHIP:
=CALCULATE(CALCULATE(CALCULATE(<anyExpression>, USERELATIONSHIP(t1[colA], t2[colB])),
t99[colZ]=999), USERELATIONSHIP(t1[colA], t2[colA]))

.

For 1-to-1 relationships, USERELATIONSHIP will only activate the relationship in one direction. In

particular, filters will only be able to flow from columnName2's table to columnName1's table. If bi-

directional cross-filtering is desired, two USERELATIONSHIPs with opposite directionality can be used in

the same calculation. For example,

CALCULATE(..., USERELATIONSHIP(T1[K], T2[K]), USERELATIONSHIP(T2[K], T1[K])) .

The following sample shows how to override the default, active, relationship between InternetSales and

DateTime tables. The default relationship exists between the OrderDate column, in the InternetSales table, and

the Date column, in the DateTime table.

To calculate the sum of internet sales and allow slicing by ShippingDate instead of the traditional OrderDate,

create measure, [InternetSales by ShippingDate] using the following expression:

Relationships between InternetSales[ShipmentDate] and DateTime[Date] must exist and should not be the active

relationship; also, the relationship between InternetSales[OrderDate] and DateTime[Date] should exist and

should be the active relationship.

Statistical functions
 10/26/2021 • 2 minutes to read

 In this category

F UN C T IO NF UN C T IO N DESC RIP T IO NDESC RIP T IO N

BETA.DIST Returns the beta distribution.

BETA.INV Returns the inverse of the beta cumulative probability
density function (BETA.DIST).

CHISQ.DIST Returns the chi-squared distribution.

CHISQ.DIST.RT Returns the right-tailed probability of the chi-squared
distribution.

CHISQ.INV Returns the inverse of the left-tailed probability of the chi-
squared distribution.

CHISQ.INV.RT Returns the inverse of the right-tailed probability of the chi-
squared distribution.

COMBIN Returns the number of combinations for a given number of
items.

COMBINA Returns the number of combinations (with repetitions) for a
given number of items.

CONFIDENCE.NORM The confidence interval is a range of values.

CONFIDENCE.T Returns the confidence interval for a population mean, using
a Student's t distribution.

EXPON.DIST Returns the exponential distribution.

GEOMEAN Returns the geometric mean of the numbers in a column.

GEOMEANX Returns the geometric mean of an expression evaluated for
each row in a table.

MEDIAN Returns the median of numbers in a column.

MEDIANX Returns the median number of an expression evaluated for
each row in a table.

Statistical functions calculate values related to statistical distributions and probability, such as standard deviation

and number of permutations.

NORM.DIST Returns the normal distribution for the specified mean and
standard deviation.

NORM.INV The inverse of the normal cumulative distribution for the
specified mean and standard deviation.

NORM.S.DIST Returns the standard normal distribution (has a mean of
zero and a standard deviation of one).

NORM.S.INV Returns the inverse of the standard normal cumulative
distribution.

PERCENTILE.EXC Returns the k-th percentile of values in a range, where k is in
the range 0..1, exclusive.

PERCENTILE.INC Returns the k-th percentile of values in a range, where k is in
the range 0..1, inclusive.

PERCENTILEX.EXC Returns the percentile number of an expression evaluated for
each row in a table.

PERCENTILEX.INC Returns the percentile number of an expression evaluated for
each row in a table.

PERMUT Returns the number of permutations for a given number of
objects that can be selected from number objects.

POISSON.DIST Returns the Poisson distribution.

RANK.EQ Returns the ranking of a number in a list of numbers.

RANKX Returns the ranking of a number in a list of numbers for
each row in the table argument.

SAMPLE Returns a sample of N rows from the specified table.

STDEV.P Returns the standard deviation of the entire population.

STDEV.S Returns the standard deviation of a sample population.

STDEVX.P Returns the standard deviation of the entire population.

STDEVX.S Returns the standard deviation of a sample population.

T.DIST Returns the Student's left-tailed t-distribution.

T.DIST.2T Returns the two-tailed Student's t-distribution.

T.DIST.RT Returns the right-tailed Student's t-distribution.

T.INV Returns the left-tailed inverse of the Student's t-distribution.

F UN C T IO NF UN C T IO N DESC RIP T IO NDESC RIP T IO N

T.INV.2t Returns the two-tailed inverse of the Student's t-distribution.

VAR.P Returns the variance of the entire population.

VAR.S Returns the variance of a sample population.

VARX.P Returns the variance of the entire population.

VARX.S Returns the variance of a sample population.

F UN C T IO NF UN C T IO N DESC RIP T IO NDESC RIP T IO N

BETA.DIST
 10/26/2021 • 2 minutes to read

 Syntax

BETA.DIST(x,alpha,beta,cumulative,[A],[B])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

x The value between A and B at which to evaluate the function

Alpha A parameter of the distribution.

Beta A parameter of the distribution.

A Optional. A lower bound to the interval of x.

B Optional. An upper bound to the interval of x.

 Return value

 Remarks

Returns the beta distribution. The beta distribution is commonly used to study variation in the percentage of

something across samples, such as the fraction of the day people spend watching television.

Returns the beta distribution.

If any argument is nonnumeric, BETA.DIST returns the #VALUE! error value.

If any argument is not an integer, it is rounded.

If alpha ≤ 0 or beta ≤ 0, BETA.DIST returns the #NUM! error value.

If x < A, x > B, or A = B, BETA.DIST returns the #NUM! error value.

If you omit values for A and B, BETA.DIST uses the standard cumulative beta distribution, so that A = 0

and B = 1.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

BETA.INV
 10/26/2021 • 2 minutes to read

 Syntax

BETA.INV(probability,alpha,beta,[A],[B])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

Probability A probability associated with the beta distribution.

Alpha A parameter of the distribution.

Beta A parameter the distribution.

A Optional. A lower bound to the interval of x.

B Optional. An upper bound to the interval of x.

 Return value

 Remarks

Returns the inverse of the beta cumulative probability density function (BETA.DIST).

If probability = BETA.DIST(x,...TRUE), then BETA.INV(probability,...) = x. The beta distribution can be used in project

planning to model probable completion times given an expected completion time and variability.

Returns the inverse of the beta cumulative probability density function (BETA.DIST).

If any argument is nonnumeric, BETA.INV returns the #VALUE! error value.

If any argument is not an integer, it is rounded.

If alpha ≤ 0 or beta ≤ 0, BETA.INV returns the #NUM! error value.

If probability ≤ 0 or probability > 1, BETA.INV returns the #NUM! error value.

If you omit values for A and B, BETA.INV uses the standard cumulative beta distribution, so that A = 0 and

B = 1.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

CHISQ.DIST
 10/26/2021 • 2 minutes to read

 Syntax

CHISQ.DIST(<x>, <deg_freedom>, <cumulative>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

x The value at which you want to evaluate the distribution.

Deg_freedom The number of degrees of freedom.

cumulative A logical value that determines the form of the function. If
cumulative is TRUE, CHISQ.DIST returns the cumulative
distribution function; if FALSE, it returns the probability
density function.

 Return value

 Remarks

 Example

EVALUATE { CHISQ.DIST(2, 2, TRUE) }

Returns the chi-squared distribution.

The chi-squared distribution is commonly used to study variation in the percentage of something across

samples, such as the fraction of the day people spend watching television.

The chi-squared distribution.

If x or deg_freedom is nonnumeric, an error is returned.

If deg_freedom is not an integer, it is rounded.

If x < 0, an error is returned.

If deg_freedom < 1 or deg_freedom > 10^10, an error is returned.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query,

Returns

[VA L UE][VA L UE]

0.632120558828558

CHISQ.DIST.RT
 10/26/2021 • 2 minutes to read

 Syntax

CHISQ.DIST.RT(<x>, <deg_freedom>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

x The value at which you want to evaluate the distribution.

Deg_freedom The number of degrees of freedom.

 Return value

 Remarks

 Example

EVALUATE { CHISQ.DIST.RT(2, 5) }

[VA L UE][VA L UE]

0.84914503608461

Returns the right-tailed probability of the chi-squared distribution.

The chi-squared distribution is associated with a chi-squared test. Use the chi-squared test to compare observed

and expected values. For example, a genetic experiment might hypothesize that the next generation of plants will

exhibit a certain set of colors. By comparing the observed results with the expected ones, you can decide

whether your original hypothesis is valid.

The right-tailed probability of the chi-squared distribution.

If x or deg_freedom is nonnumeric, an error is returned.

If deg_freedom is not an integer, it is rounded.

If x < 0, an error is returned.

If deg_freedom < 1 or deg_freedom > 10^10, an error is returned.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query,

Returns

CHISQ.INV
 10/26/2021 • 2 minutes to read

 Syntax

CHISQ.INV(probability,deg_freedom)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

Probability A probability associated with the chi-squared distribution.

Deg_freedom The number of degrees of freedom.

 Return value

 Remarks

 Example

F O RM UL AF O RM UL A DESC RIP T IO NDESC RIP T IO N RESULTRESULT

= CHISQ.INV(0.93,1) Inverse of the left-tailed probability of
the chi-squared distribution for 0.93,
using 1 degree of freedom.

5.318520074

= CHISQ.INV(0.6,2) Inverse of the left-tailed probability of
the chi-squared distribution for 0.6,
using 2 degrees of freedom.

1.832581464

Returns the inverse of the left-tailed probability of the chi-squared distribution.

The chi-squared distribution is commonly used to study variation in the percentage of something across

samples, such as the fraction of the day people spend watching television.

Returns the inverse of the left-tailed probability of the chi-squared distribution.

If argument is nonnumeric, CHISQ.INV returns the #VALUE! error value.

If probability < 0 or probability > 1, CHISQ.INV returns the #NUM! error value.

If deg_freedom is not an integer, it is rounded.

If deg_freedom < 0 or deg_freedom > 10^10, CHISQ.INV returns the #NUM! error value.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

CHISQ.INV.RT
 10/26/2021 • 2 minutes to read

 Syntax

CHISQ.INV.RT(probability,deg_freedom)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

Probability A probability associated with the chi-squared distribution.

Deg_freedom The number of degrees of freedom.

 Return value

 Remarks

Returns the inverse of the right-tailed probability of the chi-squared distribution.

If probability = CHISQ.DIST.RT(x,...), then CHISQ.INV.RT(probability,...) = x. Use this function to compare observed

results with expected ones in order to decide whether your original hypothesis is valid.

Returns the inverse of the right-tailed probability of the chi-squared distribution.

If either argument is nonnumeric, CHISQ.INV.RT returns the #VALUE! error value.

If probability < 0 or probability > 1, CHISQ.INV.RT returns the #NUM! error value.

If deg_freedom is not an integer, it is rounded.

If deg_freedom < 1, CHISQ.INV.RT returns the #NUM! error value.

Given a value for probability, CHISQ.INV.RT seeks that value x such that CHISQ.DIST.RT(x, deg_freedom) =

probability. Thus, precision of CHISQ.INV.RT depends on precision of CHISQ.DIST.RT. CHISQ.INV.RT uses an

iterative search technique. If the search has not converged after 64 iterations, the function returns the

#N/A error value.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

COMBIN
 10/26/2021 • 2 minutes to read

 Syntax

COMBIN(number, number_chosen)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number The number of items.

number_chosen The number of items in each combination.

 Return value

 Remarks

 Example

F O RM UL AF O RM UL A DESC RIP T IO NDESC RIP T IO N RESULTRESULT

= COMBIN(8,2) Possible two-person teams that can be
formed from 8 candidates.

28

Returns the number of combinations for a given number of items. Use COMBIN to determine the total possible

number of groups for a given number of items.

Returns the number of combinations for a given number of items.

Numeric arguments are truncated to integers.

If either argument is nonnumeric, COMBIN returns the #VALUE! error value.

If number < 0, number_chosen < 0, or number < number_chosen, COMBIN returns the #NUM! error

value.

A combination is any set or subset of items, regardless of their internal order. Combinations are distinct

from permutations, for which the internal order is significant.

The number of combinations is as follows, where number = n and number_chosen = k:

$${n \choose k} = \frac{P_{k,n}}{k!} = \frac{n!}{k!(n-k)!}$$

Where

$$P_{k,n} = \frac{n!}{(n-k)!}$$

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

COMBINA
 10/26/2021 • 2 minutes to read

 Syntax

COMBINA(number, number_chosen)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number Must be greater than or equal to 0, and greater than or
equal to Number_chosen. Non-integer values are truncated.

number_chosen Must be greater than or equal to 0. Non-integer values are
truncated.

 Return value

 Remarks

 Example

F O RM UL AF O RM UL A DESC RIP T IO NDESC RIP T IO N RESULTRESULT

= COMBINA(4,3) Returns the number of combinations
(with repetitions) for 4 and 3.

20

= COMBINA(10,3) Returns the number of combinations
(with repetitions) for 10 and 3.

220

Returns the number of combinations (with repetitions) for a given number of items.

Returns the number of combinations (with repetitions) for a given number of items.

If the value of either argument is outside of its constraints, COMBINA returns the #NUM! error value.

If either argument is a non-numeric value, COMBINA returns the #VALUE! error value.

The following equation is used, where N is Number and M is Number_chosen:

$${N+M-1 \choose N-1}$$

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

CONFIDENCE.NORM
 10/26/2021 • 2 minutes to read

 Syntax

CONFIDENCE.NORM(alpha,standard_dev,size)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

alpha The significance level used to compute the confidence level.
The confidence level equals 100*(1 - alpha)%, or in other
words, an alpha of 0.05 indicates a 95 percent confidence
level.

standard_dev The population standard deviation for the data range and is
assumed to be known.

standard_dev,size The sample size.

 Return value

 Remarks

The confidence interval is a range of values. Your sample mean, x, is at the center of this range and the range is x

± CONFIDENCE.NORM. For example, if x is the sample mean of delivery times for products ordered through the

mail, x ± CONFIDENCE.NORM is a range of population means. For any population mean, μ0, in this range, the

probability of obtaining a sample mean further from μ0 than x is greater than alpha; for any population mean,

μ0, not in this range, the probability of obtaining a sample mean further from μ0 than x is less than alpha. In

other words, assume that we use x, standard_dev, and size to construct a two-tailed test at significance level

alpha of the hypothesis that the population mean is μ0. Then we will not reject that hypothesis if μ0 is in the

confidence interval and will reject that hypothesis if μ0 is not in the confidence interval. The confidence interval

does not allow us to infer that there is probability 1 – alpha that our next package will take a delivery time that is

in the confidence interval.

A range of values

If any argument is nonnumeric, CONFIDENCE.NORM returns the #VALUE! error value.

If alpha ≤ 0 or alpha ≥ 1, CONFIDENCE.NORM returns the #NUM! error value.

If standard_dev ≤ 0, CONFIDENCE.NORM returns the #NUM! error value.

If size is not an integer, it is rounded.

If size < 1, CONFIDENCE.NORM returns the #NUM! error value.

If we assume alpha equals 0.05, we need to calculate the area under the standard normal curve that

equals (1 - alpha), or 95 percent. This value is ± 1.96. The confidence interval is therefore:

$$\overline{x} \pm 1.96 \bigg(\frac{\sigma}{\sqrt{n}} \bigg) $$

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

CONFIDENCE.T
 10/26/2021 • 2 minutes to read

 Syntax

CONFIDENCE.T(alpha,standard_dev,size)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

alpha The significance level used to compute the confidence level.
The confidence level equals 100*(1 - alpha)%, or in other
words, an alpha of 0.05 indicates a 95 percent confidence
level.

standard_dev The population standard deviation for the data range and is
assumed to be known.

size The sample size.

 Return value

 Remarks

 Example

F O RM UL AF O RM UL A DESC RIP T IO NDESC RIP T IO N RESULTRESULT

= CONFIDENCE.T(0.05,1,50) Confidence interval for the mean of a
population based on a sample size of
50, with a 5% significance level and a
standard deviation of 1. This is based
on a Student's t-distribution.

0.284196855

Returns the confidence interval for a population mean, using a Student's t distribution.

Returns the confidence interval for a population mean, using a Student's t distribution.

If any argument is nonnumeric, CONFIDENCE.T returns the #VALUE! error value.

If alpha ≤ 0 or alpha ≥ 1, CONFIDENCE.T returns the #NUM! error value.

If standard_dev ≤ 0, CONFIDENCE.T returns the #NUM! error value.

If size is not an integer, it is rounded.

If size equals 1, CONFIDENCE.T returns #DIV/0! error value.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

EXPON.DIST
 10/26/2021 • 2 minutes to read

 Syntax

EXPON.DIST(x,lambda,cumulative)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

x Required. The value of the function.

lambda Required. The parameter value.

cumulative Required. A logical value that indicates which form of the
exponential function to provide. If cumulative is TRUE,
EXPON.DIST returns the cumulative distribution function; if
FALSE, it returns the probability density function.

 Return value

 Remarks

Returns the exponential distribution. Use EXPON.DIST to model the time between events, such as how long an

automated bank teller takes to deliver cash. For example, you can use EXPON.DIST to determine the probability

that the process takes at most 1 minute.

Returns the exponential distribution.

If x or lambda is nonnumeric, EXPON.DIST returns the #VALUE! error value.

If x or lambda is not an integer, it is rounded.

If x < 0, EXPON.DIST returns the #NUM! error value.

If lambda ≤ 0, EXPON.DIST returns the #NUM! error value.

The equation for the probability density function is:

$$f(x; \lambda) = \lambda e^{-\lambda x}$$

The equation for the cumulative distribution function is:

$$F(x; \lambda) = 1 - e^{-\lambda x}$$

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

GEOMEAN
 10/26/2021 • 2 minutes to read

 Syntax

GEOMEAN(<column>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

column The column that contains the numbers for which the
geometric mean is to be computed.

 Return value

 Remarks

 Example

= GEOMEAN(Investment[Return])

 See also

Returns the geometric mean of the numbers in a column.

To return the geometric mean of an expression evaluated for each row in a table, use GEOMEANX function.

A decimal number.

Only the numbers in the column are counted. Blanks, logical values, and text are ignored.

GEOMEAN(Table[Column]) is equivalent to GEOMEANX(Table, Table[Column])

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following computes the geometric mean of the Return column in the Investment table:

GEOMEANX function

GEOMEANX
 10/26/2021 • 2 minutes to read

 Syntax

GEOMEANX(<table>, <expression>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

table The table containing the rows for which the expression will
be evaluated.

expression The expression to be evaluated for each row of the table.

 Return value

 Remarks

 Example

= GEOMEANX(Investments, Investments[ReturnPct] + 1)

 See also

Returns the geometric mean of an expression evaluated for each row in a table.

To return the geometric mean of the numbers in a column, use GEOMEAN function.

A decimal number.

The GEOMEANX function takes as its first argument a table, or an expression that returns a table. The

second argument is a column that contains the numbers for which you want to compute the geometric

mean, or an expression that evaluates to a column.

Only the numbers in the column are counted. Blanks, logical values, and text are ignored.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following computes the geometric mean of the ReturnPct column in the Investments table:

GEOMEAN function

MEDIAN
 10/26/2021 • 2 minutes to read

 Syntax

MEDIAN(<column>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

column The column that contains the numbers for which the median
is to be computed.

 Return value

 Remarks

 Example

= MEDIAN(Customers[Age])

 See also

Returns the median of numbers in a column.

To return the median of an expresssion evaluated for each row in a table, use MEDIANX function.

A decimal number.

Only the numbers in the column are counted. Blanks, logical values, and text are ignored.

MEDIAN(Table[Column]) is equivalent to MEDIANX(Table, Table[Column]).

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following computes the median of a column named Age in a table named Customers:

MEDIANX function

MEDIANX)
 10/26/2021 • 2 minutes to read

 Syntax

MEDIANX(<table>, <expression>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

table The table containing the rows for which the expression will
be evaluated.

expression The expression to be evaluated for each row of the table.

 Return value

 Remarks

 Example

= MEDIANX(FILTER(Customers, RELATED(Geography[Country]="USA")), Customers[Age])

 See also

Returns the median number of an expression evaluated for each row in a table.

To return the median of numbers in a column, use MEDIAN function.

A decimal number.

The MEDIANX function takes as its first argument a table, or an expression that returns a table. The

second argument is a column that contains the numbers for which you want to compute the median, or

an expression that evaluates to a column.

Only the numbers in the column are counted.

Logical values and text are ignored.

MEDIANX does not ignore blanks; however, MEDIAN does ignore blanks

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following computes the median age of customers who live in the USA.

MEDIAN function

NORM.DIST
 10/26/2021 • 2 minutes to read

 Syntax

NORM.DIST(X, Mean, Standard_dev, Cumulative)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

X The value for which you want the distribution.

Mean The arithmetic mean of the distribution.

Standard_dev The standard deviation of the distribution.

Cumulative* A logical value that determines the form of the function. If
cumulative is TRUE, NORM.DIST returns the cumulative
distribution function; if FALSE, it returns the probability
density function.

 Return value

 Remarks

 Example

EVALUATE { NORM.DIST(42, 40, 1.5, TRUE) }

[VA L UE][VA L UE]

0.908788780274132

 See also

Returns the normal distribution for the specified mean and standard deviation.

The normal distribution for the specified mean and standard deviation.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-level

security (RLS) rules.

Returns

NORM.S.DIST function

NORM.INV function

NORM.S.INV

NORM.INV
 10/26/2021 • 2 minutes to read

 Syntax

NORM.INV(Probability, Mean, Standard_dev)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

Probability A probability corresponding to the normal distribution.

Mean The arithmetic mean of the distribution.

Standard_dev The standard deviation of the distribution.

 Return value

 Remarks

 Example

EVALUATE { NORM.INV(0.908789, 40, 1.5) }

[VA L UE][VA L UE]

42.00000200956628780274132

 See also

The inverse of the normal cumulative distribution for the specified mean and standard deviation.

Returns the inverse of the normal cumulative distribution for the specified mean and standard deviation.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-level

security (RLS) rules.

Returns

NORM.S.INV

NORM.S.DIST function

NORM.DIST function

NORM.S.DIST
 10/26/2021 • 2 minutes to read

 Syntax

NORM.S.DIST(Z, Cumulative)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

Z The value for which you want the distribution.

Cumulative Cumulative is a logical value that determines the form of the
function. If cumulative is TRUE, NORM.S.DIST returns the
cumulative distribution function; if FALSE, it returns the
probability density function.

 Return value

 Remarks

 Example

EVALUATE { NORM.S.DIST(1.333333, TRUE) }

[VA L UE][VA L UE]

0.908788725604095

 See also

Returns the standard normal distribution (has a mean of zero and a standard deviation of one).

The standard normal distribution (has a mean of zero and a standard deviation of one.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-level

security (RLS) rules.

Returns

NORM.INV function

NORM.DIST function

NORM.S.INV

NORM.S.INV
 10/26/2021 • 2 minutes to read

 Syntax

NORM.S.INV(Probability)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

Probability A probability corresponding to the normal distribution.

 Return value

 Remarks

 Example

EVALUATE { NORM.S.INV(0.908789) }

[VA L UE][VA L UE]

1.33333467304411

 See also

Returns the inverse of the standard normal cumulative distribution. The distribution has a mean of zero and a

standard deviation of one.

The inverse of the standard normal cumulative distribution. The distribution has a mean of zero and a standard

deviation of one.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-level

security (RLS) rules.

Returns

NORM.INV

NORM.S.DIST function

NORM.DIST function

PERCENTILE.EXC
 10/26/2021 • 2 minutes to read

 Syntax

PERCENTILE.EXC(<column>, <k>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

column A column containing the values that define relative standing.

k The percentile value in the range 0..1, exclusive.

 Return value

 Remarks

 See also

Returns the k-th percentile of values in a range, where k is in the range 0..1, exclusive.

To return the percentile number of an expression evaluated for each row in a table, use PERCENTILEX.EXC

function.

The k-th percentile of values in a range, where k is in the range 0..1, exclusive.

If column is empty, BLANK() is returned.

If k is zero or blank, percentile rank of 1/(n+1) returns the smallest value. If zero, it is out of range and an

error is returned.

If k is nonnumeric or outside the range 0 to 1, an error is returned.

If k is not a multiple of 1/(n + 1), PERCENTILE.EXC will interpolate to determine the value at the k-th

percentile.

PERCENTILE.EXC will interpolate when the value for the specified percentile is between two values in the

array. If it cannot interpolate for the k percentile specified, an error is returned.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

PERCENTILEX.EXC

PERCENTILE.INC
 10/26/2021 • 2 minutes to read

 Syntax

PERCENTILE.INC(<column>, <k>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

column A column containing the values that define relative standing.

k The percentile value in the range 0..1, inclusive.

 Return value

 Remarks

 See also

Returns the k-th percentile of values in a range, where k is in the range 0..1, inclusive.

To return the percentile number of an expression evaluated for each row in a table, use PERCENTILEX.INC.

The k-th percentile of values in a range, where k is in the range 0..1, inclusive.

If column is empty, BLANK() is returned.

If k is zero or blank, percentile rank of 1/(n+1) returns the smallest value. If zero, it is out of range and an

error is returned.

If k is nonnumeric or outside the range 0 to 1, an error is returned.

If k is not a multiple of 1/(n + 1), PERCENTILE.INC will interpolate to determine the value at the k-th

percentile.

PERCENTILE.INC will interpolate when the value for the specified percentile is between two values in the

array. If it cannot interpolate for the k percentile specified, an error is returned.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

PERCENTILEX.INC

PERCENTILEX.EXC
 10/26/2021 • 2 minutes to read

 Syntax

PERCENTILEX.EXC(<table>, <expression>, k)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

table The table containing the rows for which the expression will
be evaluated.

expression The expression to be evaluated for each row of the table.

k The desired percentile value in the range 0 to 1 exclusive.

 Return value

 Remarks

 See also

Returns the percentile number of an expression evaluated for each row in a table.

To return the percentile of numbers in a column, use PERCENTILE.EXC function.

The percentile number of an expression evaluated for each row in a table.

If k is zero or blank, percentile rank of 1/(n+1) returns the smallest value. If zero, it is out of range and an

error is returned.

If k is nonnumeric or outside the range 0 to 1, an error is returned.

If k is not a multiple of 1/(n + 1), PERCENTILEX.EXC will interpolate to determine the value at the k-th

percentile.

PERCENTILEX.EXC will interpolate when the value for the specified percentile is between two values in the

array. If it cannot interpolate for the k percentile specified, an error is returned.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

PERCENTILE.EXC

PERCENTILEX.INC
 10/26/2021 • 2 minutes to read

 Syntax

PERCENTILEX.INC(<table>, <expression>;, k)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

table The table containing the rows for which the expression will
be evaluated.

expression The expression to be evaluated for each row of the table.

k The desired percentile value in the range 0 to 1 inclusive.

 Return value

 Remarks

 See also

Returns the percentile number of an expression evaluated for each row in a table.

To return the percentile of numbers in a column, use PERCENTILE.INC.

The percentile number of an expression evaluated for each row in a table.

If k is zero or blank, percentile rank of 1/(n - 1) returns the smallest value. If zero, it is out of range and an

error is returned.

If k is nonnumeric or outside the range 0 to 1, an error is returned.

If k is not a multiple of 1/(n - 1), PERCENTILEX.EXC will interpolate to determine the value at the k-th

percentile.

PERCENTILEX.INC will interpolate when the value for the specified percentile is between two values in the

array. If it cannot interpolate for the k percentile specified, an error is returned.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

PERCENTILE.INC

PERMUT
 10/26/2021 • 2 minutes to read

 Syntax

PERMUT(number, number_chosen)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number Required. An integer that describes the number of objects.

number_chosen Required. An integer that describes the number of objects in
each permutation.

 Return value

 Remarks

 Example

= PERMUT(3,2)

Returns the number of permutations for a given number of objects that can be selected from number objects. A

permutation is any set or subset of objects or events where internal order is significant. Permutations are

different from combinations, for which the internal order is not significant. Use this function for lottery-style

probability calculations.

Returns the number of permutations for a given number of objects that can be selected from number objects

Both arguments are truncated to integers.

If number or number_chosen is nonnumeric, PERMUT returns the #VALUE! error value.

If number ≤ 0 or if number_chosen < 0, PERMUT returns the #NUM! error value.

If number < number_chosen, PERMUT returns the #NUM! error value.

The equation for the number of permutations is:

$$P_{k,n} = \frac{n!}{(n-k)!}$$

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

In the following formula, permutations possible for a group of 3 objects where 2 are chosen:

Result,

6

POISSON.DIST
 10/26/2021 • 2 minutes to read

 Syntax

POISSON.DIST(x,mean,cumulative)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

x Required. The number of events.

mean Required. The expected numeric value.

cumulative Required. A logical value that determines the form of the
probability distribution returned. If cumulative is TRUE,
POISSON.DIST returns the cumulative Poisson probability
that the number of random events occurring will be between
zero and x inclusive; if FALSE, it returns the Poisson
probability mass function that the number of events
occurring will be exactly x.

 Return value

 Remarks

Returns the Poisson distribution. A common application of the Poisson distribution is predicting the number of

events over a specific time, such as the number of cars arriving at a toll plaza in 1 minute.

Returns the Poisson distribution.

If x is not an integer, it is rounded.

If x or mean is nonnumeric, POISSON.DIST returns the #VALUE! error value.

If x < 0, POISSON.DIST returns the #NUM! error value.

If mean < 0, POISSON.DIST returns the #NUM! error value.

POISSON.DIST is calculated as follows.

For cumulative = FALSE:

$$\text{POISSON} = \frac{e^{-\lambda} \lambda^{x}}{x!}$$

For cumulative = TRUE:

$$\text{CUMPOISSON} = \sum^{x}_{k=0} \frac{e^{-\lambda} \lambda^{x}}{k!}$$

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

RANK.EQ
 10/26/2021 • 2 minutes to read

 Syntax

RANK.EQ(<value>, <columnName>[, <order>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

value Any DAX expression that returns a single scalar value whose
rank is to be found. The expression is to be evaluated exactly
once, before the function is evaluated, and it's value passed
to the argument list.

columnName The name of an existing column against which ranks will be
determined. It cannot be an expression or a column created
using these functions: ADDCOLUMNS, ROW or
SUMMARIZE.

order (Optional) A value that specifies how to rank number, low to
high or high to low:

 order valuesorder values

VA L UEVA L UE A LT ERN AT E VA L UEA LT ERN AT E VA L UE DESC RIP T IO NDESC RIP T IO N

0 (zero) FALSE Ranks in descending order of
columnName. If value is equal to the
highest number in columnName then
RANK.EQRANK.EQ is 1.

1 TRUE Ranks in ascending order of
columnName. If value is equal to the
lowest number in columnName then
RANK.EQRANK.EQ is 1.

 Return value

 Remarks

Returns the ranking of a number in a list of numbers.

A number indicating the rank of value among the numbers in columnName.

columnName cannot refer to any column created using these functions: ADDCOLUMNS, ROW or

SUMMARIZE.I

If value is not in columnName or value is a blank, then RANK.EQ returns a blank value.

Duplicate values of value receive the same rank value; the next rank value assigned will be the rank value

 Example 1

= RANK.EQ(InternetSales_USD[SalesAmount_USD], InternetSales_USD[SalesAmount_USD])

 Example 2

= RANK.EQ(Students[Test_Score], NationalScores[Test_Score])

plus the number of duplicate values. For example if five (5) values are tied with a rank of 11 then the next

value will receive a rank of 16 (11 + 5).

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following example creates a calculated column that ranks the values in SalesAmount_USD, from the

InternetSales_USD table, against all numbers in the same column.

The following example ranks a subset of values against a given sample. Assume that you have a table of local

students with their performance in a specific national test and, also, you have the entire set of scores in that

national test. The following calculated column will give you the national ranking for each of the local students.

RANKX
 10/26/2021 • 2 minutes to read

 Syntax

RANKX(<table>, <expression>[, <value>[, <order>[, <ties>]]])

 ParametersParameters

VA L UEVA L UE A LT ERN AT E VA L UEA LT ERN AT E VA L UE DESC RIP T IO NDESC RIP T IO N

0 (zero) FALSE Ranks in descending order of values of
expression. If value is equal to the
highest number in expression then
RANKX returns 1.

This is the default value when order
parameter is omitted.

1 TRUE Ranks in ascending order of
expression. If value is equal to the
lowest number in expression then
RANKX returns 1.

EN UM ERAT IO NEN UM ERAT IO N DESC RIP T IO NDESC RIP T IO N

Returns the ranking of a number in a list of numbers for each row in the table argument.

tabletable

Any DAX expression that returns a table of data over which the expression is evaluated.

expressionexpression

Any DAX expression that returns a single scalar value. The expression is evaluated for each row of table, to

generate all possible values for ranking. See the remarks section to understand the function behavior when

expression evaluates to BLANK.

valuevalue

(Optional) Any DAX expression that returns a single scalar value whose rank is to be found. See the remarks

section to understand the function's behavior when value is not found in the expression.

When the value parameter is omitted, the value of expression at the current row is used instead.

orderorder

(Optional) A value that specifies how to rank value, low to high or high to low:

tiesties

(Optional) An enumeration that defines how to determine ranking when there are ties.

Skip The next rank value, after a tie, is the rank value of the tie
plus the count of tied values. For example if five (5) values
are tied with a rank of 11 then the next value will receive a
rank of 16 (11 + 5).

This is the default value when ties parameter is omitted.

Dense The next rank value, after a tie, is the next rank value. For
example if five (5) values are tied with a rank of 11 then the
next value will receive a rank of 12.

EN UM ERAT IO NEN UM ERAT IO N DESC RIP T IO NDESC RIP T IO N

 Return value

 Remarks

 Example

= RANKX(ALL(Products), SUMX(RELATEDTABLE(InternetSales), [SalesAmount]))

The rank number of value among all possible values of expression evaluated for all rows of table numbers.

If expression or value evaluates to BLANK it is treated as a 0 (zero) for all expressions that result in a

number, or as an empty text for all text expressions.

If value is not among all possible values of expression then RANKX temporarily adds value to the values

from expression and re-evaluates RANKX to determine the proper rank of value.

Optional arguments might be skipped by placing an empty comma (,) in the argument list, i.e.

RANKX(Inventory, [InventoryCost],,,"Dense")

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following calculated column in the Products table calculates the sales ranking for each product in the

Internet channel.

SAMPLE
 10/26/2021 • 2 minutes to read

 Syntax

SAMPLE(<n_value>, <table>, <orderBy_expression>, [<order>[, <orderBy_expression>, [<order>]]…])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

n_value The number of rows to return. It is any DAX expression that
returns a single scalar value, where the expression is to be
evaluated multiple times (for each row/context). If a non-
integer value (or expression) is entered, the result is cast as
an integer.

table Any DAX expression that returns a table of data from where
to extract the 'n' sample rows.

orderBy_expression (Optional) Any scalar DAX expression where the result value
is evaluated for each row of table.

order (Optional) A value that specifies how to sort
orderBy_expression values, ascending or descending: 0
(zero), sorts in descending order of values of order_by. 1,
ranks in ascending order of order_by.

 Return value

 Remarks

Returns a sample of N rows from the specified table.

A table consisting of a sample of N rows of table or an empty table if n_value is 0 (zero) or less. If OrderBy

arguments are provided, the sample will be stable and deterministic, returning the first row, the last row, and

evenly distributed rows between them. If no ordering is specified, the sample will be random, not stable, and not

deterministic.

If n_value is 0 (zero) or less then SAMPLE returns an empty table.

In order to avoid duplicate values in the sample, the table provided as the second argument should be

grouped by the column used for sorting.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

STDEV.S
 10/26/2021 • 2 minutes to read

 Syntax

STDEV.S(<ColumnName>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

columnName The name of an existing column using standard DAX syntax,
usually fully qualified. It cannot be an expression.

 Return value

 Exceptions

 Remarks

 Example

= STDEV.S(InternetSales_USD[SalesAmount_USD])

Returns the standard deviation of a sample population.

A number that represents the standard deviation of a sample population.

STDEV.S assumes that the column refers to a sample of the population. If your data represents the entire

population, then compute the standard deviation by using STDEV.P.

STDEV.S uses the following formula:

Ã[∑(x - x̃) /(n-1)]2

where x̃ is the average value of x for the sample population and n is the population size.

Blank rows are filtered out from columnName and not considered in the calculations.

An error is returned if columnName contains less than 2 non-blank rows.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following example shows the formula for a measure that calculates the standard deviation of the column,

SalesAmount_USD, when the table InternetSales_USD is the sample population.

STDEV.P
 10/26/2021 • 2 minutes to read

 Syntax

STDEV.P(<ColumnName>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

columnName The name of an existing column using standard DAX syntax,
usually fully qualified. It cannot be an expression.

 Return value

 Remarks

 Example

= STDEV.P(InternetSales_USD[SalesAmount_USD])

Returns the standard deviation of the entire population.

A number representing the standard deviation of the entire population.

STDEV.P assumes that the column refers to the entire population. If your data represents a sample of the

population, then compute the standard deviation by using STDEV.S.

STDEV.P uses the following formula:

Ã[∑(x - x̃) /n]2

where x̃ is the average value of x for the entire population and n is the population size.

Blank rows are filtered out from columnName and not considered in the calculations.

An error is returned if columnName contains less than 2 non-blank rows

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following example shows the formula for a measure that calculates the standard deviation of the column,

SalesAmount_USD, when the table InternetSales_USD is the entire population.

STDEVX.S
 10/26/2021 • 2 minutes to read

 Syntax

STDEVX.S(<table>, <expression>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

table Any DAX expression that returns a single scalar value, where
the expression is to be evaluated multiple times (for each
row/context).

expression Any DAX expression that returns a single scalar value, where
the expression is to be evaluated multiple times (for each
row/context).

 Return value

 Exceptions

 Remarks

 Example

Returns the standard deviation of a sample population.

A number with the standard deviation of a sample population.

STDEVX.S evaluates expression for each row of table and returns the standard deviation of expression

assuming that table refers to a sample of the population. If table represents the entire population, then

compute the standard deviation by using STDEVX.P.

STDEVX.S uses the following formula:

Ã[∑(x - x̃) /(n-1)]2

where x̃ is the average value of x for the entire population and n is the population size.

Blank rows are filtered out from columnName and not considered in the calculations.

An error is returned if columnName contains less than 2 non-blank rows.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following example shows the formula for a calculated column that estimates the standard deviation of the

unit price per product for a sample population, when the formula is used in the Product table.

= STDEVX.S(RELATEDTABLE(InternetSales_USD), InternetSales_USD[UnitPrice_USD] –
(InternetSales_USD[DiscountAmount_USD]/InternetSales_USD[OrderQuantity]))

STDEVX.P
 10/26/2021 • 2 minutes to read

 Syntax

STDEVX.P(<table>, <expression>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

table Any DAX expression that returns a single scalar value, where
the expression is to be evaluated multiple times (for each
row/context).

expression Any DAX expression that returns a single scalar value, where
the expression is to be evaluated multiple times (for each
row/context).

 Return value

 Remarks

 Example

= STDEVX.P(RELATEDTABLE(InternetSales_USD), InternetSales_USD[UnitPrice_USD] –
(InternetSales_USD[DiscountAmount_USD]/InternetSales_USD[OrderQuantity]))

Returns the standard deviation of the entire population.

A number that represents the standard deviation of the entire population.

STDEVX.P evaluates expression for each row of table and returns the standard deviation of expression

assuming that table refers to the entire population. If the data in table represents a sample of the

population, you should compute the standard deviation by using STDEVX.S instead.

STDEVX.P uses the following formula:

Ã[∑(x - x̃) /n]2

where x̃ is the average value of x for the entire population and n is the population size.

Blank rows are filtered out from columnName and not considered in the calculations.

An error is returned if columnName contains less than 2 non-blank rows

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following example shows the formula for a calculated column that calculates the standard deviation of the

unit price per product, when the formula is used in the Product table.

T.DIST
 10/26/2021 • 2 minutes to read

 Syntax

T.DIST(X,Deg_freedom,Cumulative)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

X The numeric value at which to evaluate the distribution.

Deg_freedom An integer indicating the number of degrees of freedom.

Cumulative A logical value that determines the form of the function. If
cumulative is TRUE, T.DIST returns the cumulative
distribution function; if FALSE, it returns the probability
density function.

 Return value

 Remarks

 Example

EVALUATE { T.DIST(60, 1, TRUE) }

[VA L UE][VA L UE]

0.994695326367377

 See also

Returns the Student's left-tailed t-distribution.

The Student's left-tailed t-distribution.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-level

security (RLS) rules.

Returns,

T.DIST.2T

T.DIST.RT

T.INV

T.INV.2t

T.DIST.2T
 10/26/2021 • 2 minutes to read

 Syntax

T.DIST.2T(X,Deg_freedom)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

X The numeric value at which to evaluate the distribution.

Deg_freedom An integer indicating the number of degrees of freedom.

 Return value

 Remarks

 Example

EVALUATE { T.DIST.2T(1.959999998, 60) }

[VA L UE][VA L UE]

0.054644929975921

 See also

Returns the two-tailed Student's t-distribution.

The two-tailed Student's t-distribution.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-level

security (RLS) rules.

Returns

T.DIST

T.DIST.RT

T.INV

T.INV.2t

T.DIST.RT
 10/26/2021 • 2 minutes to read

 Syntax

T.DIST.RT(X,Deg_freedom)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

X The numeric value at which to evaluate the distribution.

Deg_freedom An integer indicating the number of degrees of freedom.

 Return value

 Remarks

 Example

EVALUATE { T.DIST.RT(1.959999998, 60) }

[VA L UE][VA L UE]

0.0273224649879605

 See also

Returns the right-tailed Student's t-distribution.

The right-tailed Student's t-distribution.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-level

security (RLS) rules.

Returns

T.DIST

T.DIST.2T

T.INV

T.INV.2t

T.INV
 10/26/2021 • 2 minutes to read

 Syntax

T.INV(Probability,Deg_freedom)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

Probability The probability associated with the Student's t-distribution.

Deg_freedom The number of degrees of freedom with which to
characterize the distribution.

 Return value

 Remarks

 Example

EVALUATE { T.INV(0.75, 2) }

[VA L UE][VA L UE]

0.816496580927726

 See also

Returns the left-tailed inverse of the Student's t-distribution.

The left-tailed inverse of the Student's t-distribution.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-level

security (RLS) rules.

Returns

T.INV.2T

T.DIST

T.DIST.2T

T.DIST.RT

T.INV.2T
 10/26/2021 • 2 minutes to read

 Syntax

T.INV.2T(Probability,Deg_freedom)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

Probability The probability associated with the Student's t-distribution.

Deg_freedom The number of degrees of freedom with which to
characterize the distribution.

 Return value

 Remarks

 Example

EVALUATE { T.INV.2T(0.546449, 60) }

[VA L UE][VA L UE]

0.606533075825759

 See also

Returns the two-tailed inverse of the Student's t-distribution.

The two-tailed inverse of the Student's t-distribution.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-level

security (RLS) rules.

Returns

T.INV

T.DIST

T.DIST.2T

T.DIST.RT

VAR.S
 10/26/2021 • 2 minutes to read

 Syntax

VAR.S(<columnName>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

columnName The name of an existing column using standard DAX syntax,
usually fully qualified. It cannot be an expression.

 Return value

 Remarks

 Example

= VAR.S(InternetSales_USD[SalesAmount_USD])

Returns the variance of a sample population.

A number with the variance of a sample population.

VAR.S assumes that the column refers to a sample of the population. If your data represents the entire

population, then compute the variance by using VAR.P.

VAR.S uses the following formula:

∑(x - x̃) /(n-1)2

where x̃ is the average value of x for the sample population

and n is the population size

Blank rows are filtered out from columnName and not considered in the calculations.

An error is returned if columnName contains less than 2 non-blank rows.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following example shows the formula for a measure that calculates the variance of the SalesAmount_USD

column from the InternetSales_USD for a sample population.

VAR.P
 10/26/2021 • 2 minutes to read

 Syntax

VAR.P(<columnName>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

columnName The name of an existing column using standard DAX syntax,
usually fully qualified. It cannot be an expression.

 Return value

 Remarks

 Example

= VAR.P(InternetSales_USD[SalesAmount_USD])

Returns the variance of the entire population.

A number with the variance of the entire population.

VAR.P assumes that the column refers the entire population. If your data represents a sample of the

population, then compute the variance by using VAR.S.

VAR.P uses the following formula:

∑(x - x̃) /n2

where x̃ is the average value of x for the entire population

and n is the population size

Blank rows are filtered out from columnName and not considered in the calculations.

An error is returned if columnName contains less than 2 non-blank rows

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following example shows the formula for a measure that estimates the variance of the SalesAmount_USD

column from the InternetSales_USD table, for the entire population.

VARX.S
 10/26/2021 • 2 minutes to read

 Syntax

VARX.S(<table>, <expression>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

table Any DAX expression that returns a table of data.

expression Any DAX expression that returns a single scalar value, where
the expression is to be evaluated multiple times (for each
row/context).

 Return value

 Remarks

 Example

= VARX.S(InternetSales_USD, InternetSales_USD[UnitPrice_USD] –
(InternetSales_USD[DiscountAmount_USD]/InternetSales_USD[OrderQuantity]))

Returns the variance of a sample population.

A number that represents the variance of a sample population.

VARX.S evaluates expression for each row of table and returns the variance of expression; on the

assumption that table refers to a sample of the population. If table represents the entire population, then

you should compute the variance by using VARX.P.

VAR.S uses the following formula:

∑(x - x̃) /(n-1)2

where x̃ is the average value of x for the sample population

and n is the population size

Blank rows are filtered out from columnName and not considered in the calculations.

An error is returned if columnName contains less than 2 non-blank rows.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following example shows the formula for a calculated column that estimates the variance of the unit price

per product for a sample population, when the formula is used in the Product table.

VARX.P
 10/26/2021 • 2 minutes to read

 Syntax

VARX.P(<table>, <expression>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

table Any DAX expression that returns a table of data.

expression Any DAX expression that returns a single scalar value, where
the expression is to be evaluated multiple times (for each
row/context).

 Return value

 Remarks

 Example

= VARX.P(InternetSales_USD, InternetSales_USD[UnitPrice_USD] –
(InternetSales_USD[DiscountAmount_USD]/InternetSales_USD[OrderQuantity]))

Returns the variance of the entire population.

A number with the variance of the entire population.

VARX.P evaluates <expression> for each row of <table> and returns the variance of <expression>

assuming that <table> refers to the entire population.. If <table> represents a sample of the population,

then compute the variance by using VARX.S.

VARX.P uses the following formula:

∑(x - x̃) /n2

where x̃ is the average value of x for the entire population

and n is the population size

Blank rows are filtered out from columnName and not considered in the calculations.

An error is returned if columnName contains less than 2 non-blank rows

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following example shows the formula for a calculated column that calculates the variance of the unit price

per product, when the formula is used in the Product table

Table manipulation functions
 10/26/2021 • 2 minutes to read

 In this category

F UN C T IO NF UN C T IO N DESC RIP T IO NDESC RIP T IO N

ADDCOLUMNS Adds calculated columns to the given table or table
expression.

ADDMISSINGITEMS Adds combinations of items from multiple columns to a
table if they do not already exist.

CROSSJOIN Returns a table that contains the Cartesian product of all
rows from all tables in the arguments.

CURRENTGROUP Returns a set of rows from the table argument of a
GROUPBY expression.

DATATABLE Provides a mechanism for declaring an inline set of data
values.

DETAILROWS Evaluates a Detail Rows Expression defined for a measure
and returns the data.

DISTINCT column Returns a one-column table that contains the distinct values
from the specified column.

DISTINCT table Returns a table by removing duplicate rows from another
table or expression.

EXCEPT Returns the rows of one table which do not appear in
another table.

FILTERS Returns a table of values directly applied as filters to
columnName.

GENERATE Returns a table with the Cartesian product between each
row in table1 and the table that results from evaluating
table2 in the context of the current row from table1.

GENERATEALL Returns a table with the Cartesian product between each
row in table1 and the table that results from evaluating
table2 in the context of the current row from table1.

GENERATESERIES Returns a single column table containing the values of an
arithmetic series.

These functions return a table or manipulate existing tables.

GROUPBY Similar to the SUMMARIZE function, GROUPBY does not do
an implicit CALCULATE for any extension columns that it
adds.

IGNORE Modifies SUMMARIZECOLUMNS by omitting specific
expressions from the BLANK/NULL evaluation.

INTERSECT Returns the row intersection of two tables, retaining
duplicates.

NATURALINNERJOIN Performs an inner join of a table with another table.

NATURALLEFTOUTERJOIN Performs an inner join of a table with another table.

ROLLUP Modifies the behavior of SUMMARIZE by adding rollup rows
to the result on columns defined by the
groupBy_columnName parameter.

ROLLUPADDISSUBTOTAL Modifies the behavior of SUMMARIZECOLUMNS by adding
rollup/subtotal rows to the result based on the
groupBy_columnName columns.

ROLLUPISSUBTOTAL Pairs rollup groups with the column added by
ROLLUPADDISSUBTOTAL within an ADDMISSINGITEMS
expression.

ROLLUPGROUP Modifies the behavior of SUMMARIZE and
SUMMARIZECOLUMNS by adding rollup rows to the result
on columns defined by the the groupBy_columnName
parameter.

ROW Returns a table with a single row containing values that
result from the expressions given to each column.

SELECTCOLUMNS Adds calculated columns to the given table or table
expression.

SUBSTITUTEWITHINDEX Returns a table which represents a left semijoin of the two
tables supplied as arguments.

SUMMARIZE Returns a summary table for the requested totals over a set
of groups.

SUMMARIZECOLUMNS Returns a summary table over a set of groups.

Table Constructor Returns a table of one or more columns.

TOPN Returns the top N rows of the specified table.

TREATAS Applies the result of a table expression as filters to columns
from an unrelated table.

UNION Creates a union (join) table from a pair of tables.

F UN C T IO NF UN C T IO N DESC RIP T IO NDESC RIP T IO N

VALUES Returns a one-column table that contains the distinct values
from the specified table or column.

F UN C T IO NF UN C T IO N DESC RIP T IO NDESC RIP T IO N

ADDCOLUMNS
 10/26/2021 • 2 minutes to read

 Syntax

ADDCOLUMNS(<table>, <name>, <expression>[, <name>, <expression>]…)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

table Any DAX expression that returns a table of data.

name The name given to the column, enclosed in double quotes.

expression Any DAX expression that returns a scalar expression,
evaluated for each row of table.

 Return value

 Remarks

 Example

ADDCOLUMNS(ProductCategory,
 , "Internet Sales", SUMX(RELATEDTABLE(InternetSales_USD), InternetSales_USD[SalesAmount_USD])
 , "Reseller Sales", SUMX(RELATEDTABLE(ResellerSales_USD),
ResellerSales_USD[SalesAmount_USD]))

P RO DUC TC AT EGO RY [P RO DUC TC AT EGO RY [
P RO DUC TC AT EGO RYP RO DUC TC AT EGO RY
N A M E]N A M E]

P RO DUC TC AT EGO RY [P RO DUC TC AT EGO RY [
P RO DUC TC AT EGO RYP RO DUC TC AT EGO RY
A LT ERN AT EKEY]A LT ERN AT EKEY]

P RO DUC TC AT EGO RY [P RO DUC TC AT EGO RY [
P RO DUC TC AT EGO RYP RO DUC TC AT EGO RY
KEY]KEY] [IN T ERN ET SA L ES][IN T ERN ET SA L ES] [RESEL L ER SA L ES][RESEL L ER SA L ES]

Bikes 1 1 25107749.77 63084675.04

Components 2 2 11205837.96

Adds calculated columns to the given table or table expression.

A table with all its original columns and the added ones.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-level

security (RLS) rules.

The following example returns an extended version of the Product Category table that includes total sales values

from the reseller channel and the internet sales.

The following table shows a preview of the data as it would be received by any function expecting to receive a

table:

Clothing 3 3 306157.5829 1669943.267

Accessories 4 4 640920.1338 534301.9888

P RO DUC TC AT EGO RY [P RO DUC TC AT EGO RY [
P RO DUC TC AT EGO RYP RO DUC TC AT EGO RY
N A M E]N A M E]

P RO DUC TC AT EGO RY [P RO DUC TC AT EGO RY [
P RO DUC TC AT EGO RYP RO DUC TC AT EGO RY
A LT ERN AT EKEY]A LT ERN AT EKEY]

P RO DUC TC AT EGO RY [P RO DUC TC AT EGO RY [
P RO DUC TC AT EGO RYP RO DUC TC AT EGO RY
KEY]KEY] [IN T ERN ET SA L ES][IN T ERN ET SA L ES] [RESEL L ER SA L ES][RESEL L ER SA L ES]

ADDMISSINGITEMS
 10/26/2021 • 2 minutes to read

 Syntax

ADDMISSINGITEMS ([<showAll_columnName> [, <showAll_columnName> [, …]]], <table> [, <groupBy_columnName>
[, [<filterTable>] [, <groupBy_columnName> [, [<filterTable>] [, …]]]]]])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

showAll_columnName (Optional) A column for which to return items with no data
for the measures used. If not specified, all columns are
returned.

table A SUMMARIZECOLUMNS table.

groupBy_columnName (Optional) A column to group by in the supplied table
argument.

filterTable (Optional) A table expression that defines which rows are
returned.

 Return value

 Remarks

 With SUMMARIZECOLUMNS

 ExampleExample

SUMMARIZECOLUMNS(
 'Sales'[CustomerId],
 "Total Qty", SUM (Sales[TotalQty])
)

Adds rows with empty values to a table returned by SUMMARIZECOLUMNS.

A table with one or more columns.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-level

security (RLS) rules.

A table returned by SUMMARIZECOLUMNS will include only rows with values. By wrapping a

SUMMARIZECOLUMNS expression within an ADDMISSINGITEMS expression, rows containing no values are

also returned.

Without ADDMISSINGITEMS, the following query:

Returns,

C USTO M ERIDC USTO M ERID TOTA LQT YTOTA LQT Y

A 5

B 3

C 3

E 2

EVALUATE
ADMISSINGITEMS (
 'Sales'[CustomerId],
 SUMMARIZECOLUMNS(
 'Sales'[CustomerId],
 "Total Qty", SUM (Sales[TotalQty])
),
 'Sales'[CustomerId]
)

C USTO M ERIDC USTO M ERID TOTA LQT YTOTA LQT Y

A 5

B 3

C 3

D

E 2

F

With ADDMISSINGITEMS, the following query:

Returns,

CROSSJOIN
 10/26/2021 • 2 minutes to read

 Syntax

CROSSJOIN(<table>, <table>[, <table>]…)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

table Any DAX expression that returns a table of data

 Return value

 Remarks

 Example

C O LO RC O LO R PAT T ERNPAT T ERN

Red Horizontal Stripe

Green Vertical Stripe

Blue Crosshatch

Returns a table that contains the Cartesian product of all rows from all tables in the arguments. The columns in

the new table are all the columns in all the argument tables.

A table that contains the Cartesian product of all rows from all tables in the arguments.

Column names from table arguments must all be different in all tables or an error is returned.

The total number of rows returned by CROSSJOIN() is equal to the product of the number of rows from

all tables in the arguments; also, the total number of columns in the result table is the sum of the number

of columns in all tables. For example, if TableATableA has rArA rows and cAcA columns, and TableBTableB has rBrB rows

and cBcB columns, and TableCTableC has rCrC rows and cCcC column; then, the resulting table has rA × rb × rCrA × rb × rC

rows and cA + cB + cCcA + cB + cC columns.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following example shows the results of applying CROSSJOIN() to two tables: ColorsColors and Stationer yStationer y .

The table ColorsColors contains colors and patterns:

The table Stationer yStationer y contains fonts and presentation:

F O N TF O N T P RESEN TAT IO NP RESEN TAT IO N

serif embossed

sans-serif engraved

CROSSJOIN(Colors, Stationery)

C O LO RC O LO R PAT T ERNPAT T ERN F O N TF O N T P RESEN TAT IO NP RESEN TAT IO N

Red Horizontal Stripe serif embossed

Green Vertical Stripe serif embossed

Blue Crosshatch serif embossed

Red Horizontal Stripe sans-serif engraved

Green Vertical Stripe sans-serif engraved

Blue Crosshatch sans-serif engraved

The expression to generate the cross join is presented below:

When the above expression is used wherever a table expression is expected, the results of the expression would

be as follows:

CURRENTGROUP
 10/26/2021 • 2 minutes to read

 Syntax

CURRENTGROUP ()

 ParametersParameters

 Return value

 Remarks

 Example

Returns a set of rows from the table argument of a GROUPBY expression that belong to the current row of the

GROUPBY result.

None

The rows in the table argument of the GROUPBY function corresponding to one group of values of the

groupBy_columnName arguments.

This function can only be used within a GROUPBY expression.

This function takes no arguments and is only supported as the first argument to one of the following

aggregation functions: AVERAGEX, COUNTAX, COUNTX, GEOMEANX, MAXX, MINX, PRODUCTX,

STDEVX.S, STDEVX.P, SUMX, VARX.S, VARX.P.

See GROUPBY.

DATATABLE
 10/26/2021 • 2 minutes to read

 Syntax

DATATABLE (ColumnName1, DataType1, ColumnName2, DataType2..., {{Value1, Value2...}, {ValueN,
ValueN+1...}...})

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

ColumnName Any DAX expression that returns a table.

DataType An enumeration that includes: INTEGER, DOUBLE, STRING,
BOOLEAN, CURRENCY, DATETIME

Value A single argument using Excel syntax for a one dimensional
array constant, nested to provide an array of arrays. This
argument represents the set of data values that will be in
the table

For example,
{ {values in row1}, {values in row2}, {values in row3}, etc. }
Where {values in row1} is a comma delimited set of constant
expressions, namely a combination of constants, combined
with a handful of basic functions including DATE, TIME, and
BLANK, as well as a plus operator between DATE and TIME
and a unary minus operator so that negative values can be
expressed.

The following are all valid values: 3, -5, BLANK(), "2009-04-
15 02:45:21". Values may not refer to anything outside the
immediate expression, and cannot refer to columns, tables,
relationships, or anything else.

A missing value will be treated identically to BLANK(). For
example, the following are the same: {1,2,BLANK(),4} {1,2,,4}

 Return value

 Remarks

Provides a mechanism for declaring an inline set of data values.

A table declaring an inline set of values.

Unlike DATATABLE, Table Constructor allows any scalar expressions as input values.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

Example

= DataTable("Name", STRING,
 "Region", STRING
 ,{
 {" User1","East"},
 {" User2","East"},
 {" User3","West"},
 {" User4","West"},
 {" User4","East"}
 }
)

DETAILROWS
 10/26/2021 • 2 minutes to read

 Syntax

DETAILROWS([Measure])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

Measure Name of a measure.

 Return value

Evaluates a Detail Rows Expression defined for a measure and returns the data.

A table with the data returned by the Detail Rows Expression. If no Detail Rows Expression is defined, the data for

the table containing the measure is returned.

DISTINCT (column)
 10/26/2021 • 2 minutes to read

NOTENOTE

 Syntax

DISTINCT(<column>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

column The column from which unique values are to be returned. Or,
an expression that returns a column.

 Return value

 Remarks

 Related functions

 Example

Returns a one-column table that contains the distinct values from the specified column. In other words, duplicate

values are removed and only unique values are returned.

This function cannot be used to Return values into a cell or column on a worksheet; rather, you nest the DISTINCT

function within a formula, to get a list of distinct values that can be passed to another function and then counted,

summed, or used for other operations.

A column of unique values.

The results of DISTINCT are affected by the current filter context. For example, if you use the formula in

the following example to create a measure, the results would change whenever the table was filtered to

show only a particular region or a time period.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

There is another version of the DISTINCT function, DISTINCT (table), that returns a table by removing duplicate

rows from another table or expression..

The VALUES function is similar to DISTINCT; it can also be used to return a list of unique values, and generally

will return exactly the same results as DISTINCT. However, in some context VALUES will return one additional

special value. For more information, see VALUES function.

The following formula counts the number of unique customers who have generated orders over the internet

channel. The table that follows illustrates the possible results when the formula is added to a report.

= COUNTROWS(DISTINCT(InternetSales_USD[CustomerKey]))

RO W L A B EL SRO W L A B EL S A C C ESSO RIESA C C ESSO RIES B IKESB IKES C LOT H IN GC LOT H IN G GRA N D TOTA LGRA N D TOTA L

2005 1013 1013

2006 2677 2677

2007 6792 4875 2867 9309

2008 9435 5451 4196 11377

Grand Total 15114 9132 6852 18484

 See also

You cannot paste the list of values that DISTINCT returns directly into a column. Instead, you pass the results of

the DISTINCT function to another function that counts, filters, or aggregates values by using the list. To make the

example as simple as possible, here the table of distinct values has been passed to the COUNTROWS function.

Also, note that the results are not additive. That is to say, the total number of unique customers in 2007 is not

the sum of unique customers of Accessories, Bikes and Clothing for that year. The reason is that a customer can

be counted in multiple groups.

Filter functions

FILTER function

RELATED function

VALUES function

DISTINCT (table)
 10/26/2021 • 2 minutes to read

 Syntax

DISTINCT(<table>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

table The table from which unique rows are to be returned. The
table can also be an expression that results in a table.

 Return value

 Related functions

 Example

EVALUATE DISTINCT({ (1, "A"), (2, "B"), (1, "A") })

[VA L UE1][VA L UE1] [VA L UE2][VA L UE2]

1 A

2 B

 See also

Returns a table by removing duplicate rows from another table or expression.

A table containing only distinct rows.

There is another version of the DISTINCT function, DISTINCT (column), that takes a column name as input

parameter.

The following query:

Returns table:

Filter functions

DISTINCT (column)

FILTER function

RELATED function

VALUES function

EXCEPT
 10/26/2021 • 2 minutes to read

 Syntax

EXCEPT(<table_expression1>, <table_expression2>

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

Table_expression Any DAX expression that returns a table.

 Return value

 Remarks

 Example

STAT ESTAT E

A

B

Returns the rows of one table which do not appear in another table.

A table that contains the rows of one table minus all the rows of another table.

If a row appears at all in both tables, it and its duplicates are not present in the result set. If a row appears

in only table_expression1, it and its duplicates will appear in the result set.

The column names will match the column names in table_expression1.

The returned table has lineage based on the columns in table_expression1 , regardless of the lineage of

the columns in the second table. For example, if the first column of first table_expression has lineage to

the base column C1 in the model, the Except will reduce the rows based on the availability of values in the

first column of second table_expression and keep the lineage on base column C1 intact.

The two tables must have the same number of columns.

Columns are compared based on positioning, and data comparison with no type coercion.

The set of rows returned depends on the order of the two expressions.

The returned table does not include columns from tables related to table_expression1.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

States1

B

B

C

D

D

STAT ESTAT E

STAT ESTAT E

B

C

D

D

D

E

E

E

STAT ESTAT E

A

STAT ESTAT E

E

E

E

States2

Except(States1, States2)

Except(States2, States1)

FILTERS
 10/26/2021 • 2 minutes to read

 Syntax

FILTERS(<columnName>)

 ParametersParameters

T ERMT ERM DESC RIP T IO NDESC RIP T IO N

columnName The name of an existing column, using standard DAX syntax.
It cannot be an expression.

 Return value

 Remarks

 Example

= COUNTROWS(FILTERS(ResellerSales_USD[ProductKey]))

Returns the values that are directly applied as filters to columnName.

The values that are directly applied as filters to columnName.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-level

security (RLS) rules.

The following example shows how to determine the number of direct filters a column has.

This example lets you know how many direct filters on ResellerSales_USD[ProductKey] have been applied to the

context where the expression is being evaluated.

GENERATE
 10/26/2021 • 2 minutes to read

 Syntax

GENERATE(<table1>, <table2>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

table1 Any DAX expression that returns a table.

table2 Any DAX expression that returns a table.

 Return value

 Remarks

 Example

SA L EST ERRITO RY [SA L EST ERRITO RY GRSA L EST ERRITO RY [SA L EST ERRITO RY GR
O UP]O UP]

P RO DUC TC AT EGO RY [P RO DUC TC AT EGP RO DUC TC AT EGO RY [P RO DUC TC AT EG
O RY N A M E]O RY N A M E] [RESEL L ER SA L ES][RESEL L ER SA L ES]

Europe Accessories $ 142,227.27

Europe Bikes $ 9,970,200.44

Europe Clothing $ 365,847.63

Returns a table with the Cartesian product between each row in table1 and the table that results from evaluating

table2 in the context of the current row from table1.

A table with the Cartesian product between each row in table1 and the table that results from evaluating table2

in the context of the current row from table1

If the evaluation of table2 for the current row in table1 returns an empty table, then the result table will

not contain the current row from table1. This is different than GENERATEALL() where the current row

from table1 will be included in the results and columns corresponding to table2 will have null values for

that row.

All column names from table1 and table2 must be different or an error is returned.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

In the following example the user wants a summary table of the sales by Region and Product Category for the

Resellers channel, like the following table:

Europe Components $ 2,214,440.19

North America Accessories $ 379,305.15

North America Bikes $ 52,403,796.85

North America Clothing $ 1,281,193.26

North America Components $ 8,882,848.05

Pacific Accessories $ 12,769.57

Pacific Bikes $ 710,677.75

Pacific Clothing $ 22,902.38

Pacific Components $ 108,549.71

SA L EST ERRITO RY [SA L EST ERRITO RY GRSA L EST ERRITO RY [SA L EST ERRITO RY GR
O UP]O UP]

P RO DUC TC AT EGO RY [P RO DUC TC AT EGP RO DUC TC AT EGO RY [P RO DUC TC AT EG
O RY N A M E]O RY N A M E] [RESEL L ER SA L ES][RESEL L ER SA L ES]

GENERATE(
SUMMARIZE(SalesTerritory, SalesTerritory[SalesTerritoryGroup])
,SUMMARIZE(ProductCategory
, [ProductCategoryName]
, "Reseller Sales", SUMX(RELATEDTABLE(ResellerSales_USD), ResellerSales_USD[SalesAmount_USD])
)
)

The following formula produces the above table:

SA L EST ERRITO RY [SA L EST ERRITO RY GRO UP]SA L EST ERRITO RY [SA L EST ERRITO RY GRO UP]

North America

Europe

Pacific

NA

P RO DUC TC AT EGO RY [P RO DUC TC AT EGO RY N A M E]P RO DUC TC AT EGO RY [P RO DUC TC AT EGO RY N A M E] [RESEL L ER SA L ES][RESEL L ER SA L ES]

Bikes $ 63,084,675.04

Components $ 11,205,837.96

1. The first SUMMARIZE statement, SUMMARIZE(SalesTerritory, SalesTerritory[SalesTerritoryGroup]) ,

produces a table of territory groups, where each row is a territory group, as shown below:

2. The second SUMMARIZE statement,
SUMMARIZE(ProductCategory, [ProductCategoryName], "Reseller Sales",
SUMX(RELATEDTABLE(ResellerSales_USD), ResellerSales_USD[SalesAmount_USD]))

, produces a table of Product Category groups with the Reseller sales for each group, as shown below:

Clothing $ 1,669,943.27

Accessories $ 534,301.99

P RO DUC TC AT EGO RY [P RO DUC TC AT EGO RY N A M E]P RO DUC TC AT EGO RY [P RO DUC TC AT EGO RY N A M E] [RESEL L ER SA L ES][RESEL L ER SA L ES]

3. However, when you take the above table and evaluate it under the context of each row from the territory

groups table, you obtain different results for each territory.

GENERATEALL
 10/26/2021 • 2 minutes to read

 Syntax

GENERATEALL(<table1>, <table2>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

table1 Any DAX expression that returns a table.

table2 Any DAX expression that returns a table.

 Return value

 Remarks

 Example

SA L EST ERRITO RY [SA L EST ERRITO RY GRSA L EST ERRITO RY [SA L EST ERRITO RY GR
O UP]O UP]

P RO DUC TC AT EGO RY [P RO DUC TC AT EGP RO DUC TC AT EGO RY [P RO DUC TC AT EG
O RY N A M E]O RY N A M E] [RESEL L ER SA L ES][RESEL L ER SA L ES]

Europe Accessories $ 142,227.27

Europe Bikes $ 9,970,200.44

Europe Clothing $ 365,847.63

Returns a table with the Cartesian product between each row in table1 and the table that results from evaluating

table2 in the context of the current row from table1.

A table with the Cartesian product between each row in table1 and the table that results from evaluating table2

in the context of the current row from table1

If the evaluation of table2 for the current row in table1 returns an empty table, then the current row from

table1 will be included in the results and columns corresponding to table2 will have null values for that

row. This is different than GENERATE() where the current row from table1 will notnot be included in the

results.

All column names from table1 and table2 must be different or an error is returned.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

In the following example, the user wants a summary table of the sales by Region and Product Category for the

Resellers channel, like the following table:

Europe Components $ 2,214,440.19

NA Accessories

NA Bikes

NA Clothing

NA Components

North America Accessories $ 379,305.15

North America Bikes $ 52,403,796.85

North America Clothing $ 1,281,193.26

North America Components $ 8,882,848.05

Pacific Accessories $ 12,769.57

Pacific Bikes $ 710,677.75

Pacific Clothing $ 22,902.38

Pacific Components $ 108,549.71

SA L EST ERRITO RY [SA L EST ERRITO RY GRSA L EST ERRITO RY [SA L EST ERRITO RY GR
O UP]O UP]

P RO DUC TC AT EGO RY [P RO DUC TC AT EGP RO DUC TC AT EGO RY [P RO DUC TC AT EG
O RY N A M E]O RY N A M E] [RESEL L ER SA L ES][RESEL L ER SA L ES]

GENERATEALL(
SUMMARIZE(SalesTerritory, SalesTerritory[SalesTerritoryGroup])
,SUMMARIZE(ProductCategory
, [ProductCategoryName]
, "Reseller Sales", SUMX(RELATEDTABLE(ResellerSales_USD), ResellerSales_USD[SalesAmount_USD])
)
)

The following formula produces the above table:

SA L EST ERRITO RY [SA L EST ERRITO RY GRO UP]SA L EST ERRITO RY [SA L EST ERRITO RY GRO UP]

North America

Europe

Pacific

NA

1. The first SUMMARIZE produces a table of territory groups, where each row is a territory group, like those

listed below:

2. The second SUMMARIZE produces a table of Product Category groups with the Reseller sales for each

group, as shown below:

P RO DUC TC AT EGO RY [P RO DUC TC AT EGO RY N A M E]P RO DUC TC AT EGO RY [P RO DUC TC AT EGO RY N A M E] [RESEL L ER SA L ES][RESEL L ER SA L ES]

Bikes $ 63,084,675.04

Components $ 11,205,837.96

Clothing $ 1,669,943.27

Accessories $ 534,301.99

3. However, when you take the above table and evaluate the table under the context of each row from the

territory groups table, you obtain different results for each territory.

GENERATESERIES
 10/26/2021 • 2 minutes to read

 Syntax

GENERATESERIES(<startValue>, <endValue>[, <incrementValue>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

startValue The initial value used to generate the sequence.

endValue The end value used to generate the sequence.

incrementValue (Optional) The increment value of the sequence. When not
provided, the default value is 1.

 Return value

 Remarks

 Example 1

EVALUATE GENERATESERIES(1, 5)

[VA L UE][VA L UE]

1

2

Returns a single column table containing the values of an arithmetic series, that is, a sequence of values in which

each differs from the preceding by a constant quantity. The name of the column returned is Value.

A single column table containing the values of an arithmetic series. The name of the column is Value.

When startValue is less than endValue, an empty table is returned.

incrementValue must be a positive value.

The sequence stops at the last value that is less than or equal to endValue.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query:

Returns the following table with a single column:

3

4

5

[VA L UE][VA L UE]

 Example 2

EVALUATE GENERATESERIES(1.2, 2.4, 0.4)

[VA L UE][VA L UE]

1.2

1.6

2

2.4

 Example 3

EVALUATE GENERATESERIES(CURRENCY(10), CURRENCY(12.4), CURRENCY(0.5))

[VA L UE][VA L UE]

10

10.5

11

11.5

12

The following DAX query:

Returns the following table with a single column:

The following DAX query:

Returns the following table with a single column:

GROUPBY
 10/26/2021 • 2 minutes to read

 Syntax

GROUPBY (<table> [, <groupBy_columnName> [, <groupBy_columnName> [, …]]] [, <name>, <expression> [, <name>,
<expression> [, …]]])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

table Any DAX expression that returns a table of data.

groupBy_columnName The name of an existing column in the table (or in a related
table,) by which the data is to be grouped. This parameter
cannot be an expression.

name The name given to a new column that is being added to the
list of GroupBy columns, enclosed in double quotes.

expression One of the X aggregation functions with the first argument
being CURRENTGROUP(). See With CURRENTGROUP section
below for the full list of supported X aggregation functions.

 Return value

 Remarks

The GROUPBY function is similar to the SUMMARIZE function. However, GROUPBY does not do an implicit

CALCULATE for any extension columns that it adds. GROUPBY permits a new function, CURRENTGROUP, to be

used inside aggregation functions in the extension columns that it adds. GROUPBY is used to perform multiple

aggregations in a single table scan.

A table with the selected columns for the groupBy_columnName arguments and the extension columns

designated by the name arguments.

The GROUPBY function does the following:

1. Start with the specified table (and all related tables in the "to-one" direction).

2. Create a grouping using all of the GroupBy columns (which are required to exist in the table from

step #1.).

3. Each group is one row in the result, but represents a set of rows in the original table.

4. For each group, evaluate the extension columns being added. Unlike the SUMMARIZE function, an

implied CALCULATE is not performed, and the group isn't placed into the filter context.

Each column for which you define a name must have a corresponding expression; otherwise, an error is

returned. The first argument, name, defines the name of the column in the results. The second argument,

expression, defines the calculation performed to obtain the value for each row in that column.

 With CURRENTGROUP

 ExampleExample

DEFINE
VAR SalesByCountryAndCategory =
SUMMARIZECOLUMNS(
Geography[Country],
Product[Category],
"Total Sales", SUMX(Sales, Sales[Price] * Sales[Qty])
)

EVALUATE
GROUPBY(
SalesByCountryAndCategory,
Geography[Country],
"Max Sales", MAXX(CURRENTGROUP(), [Total Sales])
)

 See also

groupBy_columnName must be either in table or in a related table.

Each name must be enclosed in double quotation marks.

The function groups a selected set of rows into a set of summary rows by the values of one or more

groupBy_columnName columns. One row is returned for each group.

GROUPBY is primarily used to perform aggregations over intermediate results from DAX table

expressions. For efficient aggregations over physical tables in the model, consider using

SUMMARIZECOLUMNS or SUMMARIZE function.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

CURRENTGROUP can only be used in an expression that defines an extension column within the GROUPBY

function. In-effect, CURRENTGROUP returns a set of rows from the table argument of GROUPBY that belong to

the current row of the GROUPBY result. The CURRENTGROUP function takes no arguments and is only

supported as the first argument to one of the following aggregation functions: AVERAGEX, COUNTAX, COUNTX,

GEOMEANX, MAXX, MINX, PRODUCTX, STDEVX.S, STDEVX.P, SUMX, VARX.S, VARX.P.

The following example first calculates the total sales grouped by country and product category over physical

tables by using the SUMMARIZECOLUMNS function. It then uses the GROUPBY function to scan the

intermediate result from the first step to find the maximum sales in each country across the product categories.

SUMMARIZE function

SUMMARIZECOLUMNS function

IGNORE
 10/26/2021 • 2 minutes to read

 Syntax

IGNORE(<expression>)

SUMMARIZECOLUMNS(<groupBy_columnName>[, < groupBy_columnName >]…, [<filterTable>]…[, <name>, IGNORE(…)]…)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

expression Any DAX expression that returns a single value (not a table).

 Return value

 Remarks

 Example

Modifies the behavior of the SUMMARIZECOLUMNS function by omitting specific expressions from the

BLANK/NULL evaluation. Rows for which all expressions not using IGNORE return BLANK/NULL will be

excluded independent of whether the expressions which do use IGNORE evaluate to BLANK/NULL or not. This

function can only be used within a SUMMARIZECOLUMNS expression.

With SUMMARIZECOLUMNS,

The function does not return a value.

IGNORE can only be used as an expression argument to SUMMARIZECOLUMNS.

See SUMMARIZECOLUMNS.

INTERSECT
 10/26/2021 • 2 minutes to read

 Syntax

INTERSECT(<table_expression1>, <table_expression2>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

Table_expression Any DAX expression that returns a table.

 Return value

 Exceptions

 Remarks

 Example

STAT ESTAT E

A

Returns the row intersection of two tables, retaining duplicates.

A table that contains all the rows in table_expression1 that are also in table_expression2

Intersect is not commutative. In general, Intersect(T1, T2) will have a different result set than Intersect(T2,

T1).

Duplicate rows are retained. If a row appears in table_expression1 and table_expression2, it and all

duplicates in table_expression_1 are included in the result set.

The column names will match the column names in table_expression1.

The returned table has lineage based on the columns in table_expression1 , regardless of the lineage of

the columns in the second table. For example, if the first column of first table_expression has lineage to

the base column C1 in the model, the intersect will reduce the rows based on the intersect on first column

of second table_expression and keep the lineage on base column C1 intact.

Columns are compared based on positioning, and data comparison with no type coercion.

The returned table does not include columns from tables related to table_expression1.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

States1

A

B

B

B

C

D

D

STAT ESTAT E

STAT ESTAT E

B

C

D

D

D

E

STAT ESTAT E

B

B

B

C

D

D

STAT ESTAT E

States2

Intersect(States1, States2)

Intersect(States2, States1)

B

C

D

D

D

STAT ESTAT E

NATURALINNERJOIN
 10/26/2021 • 2 minutes to read

 Syntax

NATURALINNERJOIN(<leftJoinTable>, <rightJoinTable>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

leftJoinTable A table expression defining the table on the left side of the
join.

rightJoinTable A table expression defining the table on the right side of the
join.

 Return value

 Remarks

Performs an inner join of a table with another table. The tables are joined on common columns (by name) in the

two tables. If the two tables have no common column names, an error is returned.

A table which includes only rows for which the values in the common columns specified are present in both

tables. The table returned will have the common columns from the left table and other columns from both the

tables.

There is no sort order guarantee for the results.

Columns being joined on must have the same data type in both tables.

Only columns from the same source table (have the same lineage) are joined on. For example,

Products[ProductID], WebSales[ProductdID], StoreSales[ProductdID] with many-to-one relationships

between WebSales and StoreSales and the Products table based on the ProductID column, WebSales and

StoreSales tables are joined on [ProductID].

Strict comparison semantics are used during join. There is no type coercion; for example, 1 does not equal

1.0.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

NATURALLEFTOUTERJOIN
 10/26/2021 • 2 minutes to read

 Syntax

NATURALLEFTOUTERJOIN(<leftJoinTable>, <rightJoinTable>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

leftJoinTable A table expression defining the table on the left side of the
join.

rightJoinTable A table expression defining the table on the right side of the
join.

 Return value

 Remarks

Performs an inner join of a table with another table. The tables are joined on common columns (by name) in the

two tables. If the two tables have no common column names, an error is returned.

A table which includes only rows from rightJoinTable for which the values in the common columns specified are

also present in leftJoinTable. The table returned will have the common columns from the left table and the other

columns from both the tables.

There is no sort order guarantee for the results.

Columns being joined on must have the same data type in both tables.

Only columns from the same source table (have the same lineage) are joined on. For example,

Products[ProductID], WebSales[ProductdID], StoreSales[ProductdID] with many-to-one relationships

between WebSales and StoreSales and the Products table based on the ProductID column, WebSales and

StoreSales tables are joined on [ProductID].

Strict comparison semantics are used during join. There is no type coercion; for example, 1 does not equal

1.0.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

ROLLUP
 10/26/2021 • 2 minutes to read

 Syntax

ROLLUP (<groupBy_columnName> [, <groupBy_columnName> [, …]])

SUMMARIZE(<table>, <groupBy_columnName>[, <groupBy_columnName>]…[, ROLLUP(<groupBy_columnName>[,<
groupBy_columnName>…])][, <name>, <expression>]…)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

groupBy_columnName The qualified name of an existing column or ROLLUPGROUP
function to be used to create summary groups based on the
values found in it. This parameter cannot be an expression.

 Return value

 Remarks

 Example

Modifies the behavior of the SUMMARIZE function by adding rollup rows to the result on columns defined by

the groupBy_columnName parameter. This function can only be used within a SUMMARIZE expression.

With SUMMARIZE,

This function does not return a value. It only specifies the set of columns to be subtotaled.

This function can only be used within a SUMMARIZE expression.

See SUMMARIZE.

ROLLUPADDISSUBTOTAL
 10/26/2021 • 2 minutes to read

 Syntax

ROLLUPADDISSUBTOTAL ([<grandtotalFilter>], <groupBy_columnName>, <name> [, [<groupLevelFilter>] [,
<groupBy_columnName>, <name> [, [<groupLevelFilter>] [, …]]]])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

grandtotalFilter (Optional) Filter to be applied to the grandtotal level.

groupBy_columnName Name of an existing column used to create summary groups
based on the values found in it. Cannot be an expression.

name Name of an ISSUBTOTAL column. The values of the column
are calculated using the ISSUBTOTAL function.

groupLevelFilter (Optional) Filter to be applied to the current level.

 Return value

 Remarks

 Example

Modifies the behavior of the SUMMARIZECOLUMNS function by adding rollup/subtotal rows to the result based

on the groupBy_columnName columns. This function can only be used within a SUMMARIZECOLUMNS

expression.

The function does not return a value.

None

See SUMMARIZECOLUMNS.

ROLLUPGROUP
 10/26/2021 • 2 minutes to read

 Syntax

ROLLUPGROUP (<groupBy_columnName> [, <groupBy_columnName> [, …]])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

groupBy_columnName The qualified name of an existing column or ROLLUPGROUP
function to be used to create summary groups based on the
values found in it. This parameter cannot be an expression.

 Return value

 Remarks

 Example

Modifies the behavior of the SUMMARIZE and SUMMARIZECOLUMNS functions by adding rollup rows to the

result on columns defined by the the groupBy_columnName parameter. This function can only be used within a

SUMMARIZE or SUMMARIZECOLUMNS expression.

This function does not return a value. It marks a set of columns to be treated as a single group during

subtotaling by ROLLUP or ROLLUPADDISSUBTOTAL.

ROLLUPGROUP can only be used as a groupBy_columnName argument to ROLLUP, ROLLUPADDISSUBTOTAL,

or ROLLUPISSUBTOTAL.

See SUMMARIZE and SUMMARIZECOLUMNS.

ROLLUPISSUBTOTAL
 10/26/2021 • 2 minutes to read

 Syntax

ROLLUPISSUBTOTAL ([<grandTotalFilter>], <groupBy_columnName>, <isSubtotal_columnName> [,
[<groupLevelFilter>] [, <groupBy_columnName>, <isSubtotal_columnName> [, [<groupLevelFilter>] [, …]]]])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

grandTotalFilter (Optional) Filter to be applied to the grandtotal level.

groupBy_columnName Name of an existing column used to create summary groups
based on the values found in it. Cannot be an expression.

isSubtotal_columnName Name of an ISSUBTOTAL column. The values of the column
are calculated using the ISSUBTOTAL function.

groupLevelFilter (Optional) Filter to be applied to the current level.

 Return value

 Remarks

Pairs rollup groups with the column added by ROLLUPADDISSUBTOTAL. This function can only be used within an

ADDMISSINGITEMS expression.

None

This function can only be used within an ADDMISSINGITEMS expression.

ROW function
 10/26/2021 • 2 minutes to read

 Syntax

ROW(<name>, <expression>[[,<name>, <expression>]…])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

name The name given to the column, enclosed in double quotes.

expression Any DAX expression that returns a single scalar value to
populate. name.

 Return value

 Remarks

 Example

ROW("Internet Total Sales (USD)", SUM(InternetSales_USD[SalesAmount_USD]),
 "Resellers Total Sales (USD)", SUM(ResellerSales_USD[SalesAmount_USD]))

Returns a table with a single row containing values that result from the expressions given to each column.

A single row table

Arguments must always come in pairs of name and expression.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following example returns a single row table with the total sales for internet and resellers channels.

SELECTCOLUMNS
 10/26/2021 • 2 minutes to read

 Syntax

SELECTCOLUMNS(<table>, <name>, <scalar_expression> [, <name>, <scalar_expression>]…)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

table Any DAX expression that returns a table.

name The name given to the column, enclosed in double quotes.

expression Any expression that returns a scalar value like a column
reference, integer, or string value.

 Return value

 Remarks

 Example

C O UN T RYC O UN T RY STAT ESTAT E C O UN TC O UN T TOTA LTOTA L

IND JK 20 800

IND MH 25 1000

IND WB 10 900

USA CA 5 500

USA WA 10 900

Adds calculated columns to the given table or table expression.

A table with the same number of rows as the table specified as the first argument. The returned table has one

column for each pair of <name>, <scalar_expression> arguments, and each expression is evaluated in the

context of a row from the specified <table> argument.

SELECTCOLUMNS has the same signature as ADDCOLUMNS, and has the same behavior except that instead of

starting with the <table> specified, SELECTCOLUMNS starts with an empty table before adding columns.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-level

security (RLS) rules.

For the following table named InfoInfo:

SELECTCOLUMNS(Info, "StateCountry", [State]&", "&[Country])

STAT EC O UN T RYSTAT EC O UN T RY

IND, JK

IND, MH

IND, WB

USA, CA

USA, WA

Returns,

SUBSTITUTEWITHINDEX
 10/26/2021 • 2 minutes to read

 Syntax

SUBSTITUTEWITHINDEX(<table>, <indexColumnName>, <indexColumnsTable>, [<orderBy_expression>, [<order>][,
<orderBy_expression>, [<order>]]…])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

table A table to be filtered by performing a left semijoin with the
table specified as the third argument (indexColumnsTable).
This is the table on the left side of the left semijoin so the
table returned includes the same columns as this table
except that all common columns of the two tables will be
replaced with a single index column in the table returned.

indexColumnName A string which specifies the name of the index column which
is replacing all the common columns in the two tables
supplied as arguments to this function.

indexColumnsTable The second table for the left semijoin. This is the table on the
right side of the left semijoin. Only values present in this
table will be returned by the function. Also, the columns of
this table (based on column names) will be replaced with a
single index column in the table returned by this function.

orderBy_expression Any DAX expression where the result value is used to specify
the desired sort order of the indexColumnsTable table for
generating correct index values. The sort order specified for
the indexColumnsTable table defines the index of each row in
the table and that index is used in the table returned to
represent combinations of values in the indexColumnsTable
as they appear in the table supplied as the first argument to
this function.

Returns a table which represents a left semijoin of the two tables supplied as arguments. The semijoin is

performed by using common columns, determined by common column names and common data type . The

columns being joined on are replaced with a single column in the returned table which is of type integer and

contains an index. The index is a reference into the right join table given a specified sort order.

Columns in the right/second table supplied which do not exist in the left/first table supplied are not included in

the returned table and are not used to join on.

The index starts at 0 (0-based) and is incremented by one for each additional row in the right/second join table

supplied. The index is based on the sort order specified for the right/second join table.

order (Optional) A value that specifies how to sort
orderBy_expression values, ascending or descending:

Value: DescDesc. Alternative value: 00 (zero)/FALSEFALSE. Sorts in
descending order of values of orderBy_expression. This is the
default value when order parameter is omitted.

Value: ASCASC. Alternative value: 11 /TRUETRUE. Ranks in ascending
order of orderBy_expression.

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

 Return value

 Remarks

A table which includes only those values present in the indexColumnsTable table and which has an index column

instead of all columns present (by name) in the indexColumnsTable table.

This function does not guarantee any result sort order.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

SUMMARIZE
 10/26/2021 • 4 minutes to read

 Syntax

SUMMARIZE (<table>, <groupBy_columnName>[, <groupBy_columnName>]…[, <name>, <expression>]…)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

table Any DAX expression that returns a table of data.

groupBy_ColumnName (Optional) The qualified name of an existing column used to
create summary groups based on the values found in it. This
parameter cannot be an expression.

name The name given to a total or summarize column, enclosed in
double quotes.

expression Any DAX expression that returns a single scalar value, where
the expression is to be evaluated multiple times (for each
row/context).

 Return value

 Remarks

 Example

Returns a summary table for the requested totals over a set of groups.

A table with the selected columns for the groupBy_columnName arguments and the summarized columns

designed by the name arguments.

Each column for which you define a name must have a corresponding expression; otherwise, an error is

returned. The first argument, name, defines the name of the column in the results. The second argument,

expression, defines the calculation performed to obtain the value for each row in that column.

groupBy_columnName must be either in table or in a related table to table.

Each name must be enclosed in double quotation marks.

The function groups a selected set of rows into a set of summary rows by the values of one or more

groupBy_columnName columns. One row is returned for each group.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following example returns a summary of the reseller sales grouped around the calendar year and the

product category name, this result table allows you to do analysis over the reseller sales by year and product

SUMMARIZE(ResellerSales_USD
 , DateTime[CalendarYear]
 , ProductCategory[ProductCategoryName]
 , "Sales Amount (USD)", SUM(ResellerSales_USD[SalesAmount_USD])
 , "Discount Amount (USD)", SUM(ResellerSales_USD[DiscountAmount])
)

DAT ET IM E[C A L EN DA RY EA RDAT ET IM E[C A L EN DA RY EA R
]]

P RO DUC TC AT EGO RY [P RO DP RO DUC TC AT EGO RY [P RO D
UC TC AT EGO RY N A M E]UC TC AT EGO RY N A M E] [SA L ES A M O UN T (USD)][SA L ES A M O UN T (USD)]

[DISC O UN T A M O UN T[DISC O UN T A M O UN T
(USD)](USD)]

2008 Bikes 12968255.42 36167.6592

2005 Bikes 6958251.043 4231.1621

2006 Bikes 18901351.08 178175.8399

2007 Bikes 24256817.5 276065.992

2008 Components 2008052.706 39.9266

2005 Components 574256.9865 0

2006 Components 3428213.05 948.7674

2007 Components 5195315.216 4226.0444

2008 Clothing 366507.844 4151.1235

2005 Clothing 31851.1628 90.9593

2006 Clothing 455730.9729 4233.039

2007 Clothing 815853.2868 12489.3835

2008 Accessories 153299.924 865.5945

2005 Accessories 18594.4782 4.293

2006 Accessories 86612.7463 1061.4872

2007 Accessories 275794.8403 4756.6546

 With ROLLUP

 ExampleExample

category.

The following table shows a preview of the data as it would be received by any function expecting to receive a

table:

The addition of the ROLLUP syntax modifies the behavior of the SUMMARIZE function by adding rollup rows to

the result on the groupBy_columnName columns. ROLLUP can only be used within a SUMMARIZE expression.

The following example adds rollup rows to the Group-By columns of the SUMMARIZE function call:

SUMMARIZE(ResellerSales_USD
 , ROLLUP(DateTime[CalendarYear], ProductCategory[ProductCategoryName])
 , "Sales Amount (USD)", SUM(ResellerSales_USD[SalesAmount_USD])
 , "Discount Amount (USD)", SUM(ResellerSales_USD[DiscountAmount])
)

DAT ET IM E[C A L EN DA RY EA RDAT ET IM E[C A L EN DA RY EA R
]]

P RO DUC TC AT EGO RY [P RO DP RO DUC TC AT EGO RY [P RO D
UC TC AT EGO RY N A M E]UC TC AT EGO RY N A M E] [SA L ES A M O UN T (USD)][SA L ES A M O UN T (USD)]

[DISC O UN T A M O UN T[DISC O UN T A M O UN T
(USD)](USD)]

2008 Bikes 12968255.42 36167.6592

2005 Bikes 6958251.043 4231.1621

2006 Bikes 18901351.08 178175.8399

2007 Bikes 24256817.5 276065.992

2008 Components 2008052.706 39.9266

2005 Components 574256.9865 0

2006 Components 3428213.05 948.7674

2007 Components 5195315.216 4226.0444

2008 Clothing 366507.844 4151.1235

2005 Clothing 31851.1628 90.9593

2006 Clothing 455730.9729 4233.039

2007 Clothing 815853.2868 12489.3835

2008 Accessories 153299.924 865.5945

2005 Accessories 18594.4782 4.293

2006 Accessories 86612.7463 1061.4872

2007 Accessories 275794.8403 4756.6546

2008 15496115.89 41224.3038

2005 7582953.67 4326.4144

2006 22871907.85 184419.1335

2007 30543780.84 297538.0745

76494758.25 527507.9262

Returns the following table,

With ROLLUPGROUP

 ExampleExample

SUMMARIZE(ResellerSales_USD
 , ROLLUP(ROLLUPGROUP(DateTime[CalendarYear], ProductCategory[ProductCategoryName]))
 , "Sales Amount (USD)", SUM(ResellerSales_USD[SalesAmount_USD])
 , "Discount Amount (USD)", SUM(ResellerSales_USD[DiscountAmount])
)

DAT ET IM E[C A L EN DA RY EA RDAT ET IM E[C A L EN DA RY EA R
]]

P RO DUC TC AT EGO RY [P RO DP RO DUC TC AT EGO RY [P RO D
UC TC AT EGO RY N A M E]UC TC AT EGO RY N A M E] [SA L ES A M O UN T (USD)][SA L ES A M O UN T (USD)]

[DISC O UN T A M O UN T[DISC O UN T A M O UN T
(USD)](USD)]

2008 Bikes 12968255.42 36167.6592

2005 Bikes 6958251.043 4231.1621

2006 Bikes 18901351.08 178175.8399

2007 Bikes 24256817.5 276065.992

2008 Components 2008052.706 39.9266

2005 Components 574256.9865 0

2006 Components 3428213.05 948.7674

2007 Components 5195315.216 4226.0444

2008 Clothing 366507.844 4151.1235

2005 Clothing 31851.1628 90.9593

2006 Clothing 455730.9729 4233.039

2007 Clothing 815853.2868 12489.3835

2008 Accessories 153299.924 865.5945

2005 Accessories 18594.4782 4.293

2006 Accessories 86612.7463 1061.4872

2007 Accessories 275794.8403 4756.6546

76494758.25 527507.9262

The addition of ROLLUPGROUP inside a ROLLUP syntax can be used to prevent partial subtotals in rollup rows.

ROLLUPGROUP can only be used within a ROLLUP, ROLLUPADDISSUBTOTAL, or ROLLUPISSUBTOTAL

expression.

The following example shows only the grand total of all years and categories without the subtotal of each year

with all categories:

Returns the following table,

DAT ET IM E[C A L EN DA RY EA RDAT ET IM E[C A L EN DA RY EA R
]]

P RO DUC TC AT EGO RY [P RO DP RO DUC TC AT EGO RY [P RO D
UC TC AT EGO RY N A M E]UC TC AT EGO RY N A M E] [SA L ES A M O UN T (USD)][SA L ES A M O UN T (USD)]

[DISC O UN T A M O UN T[DISC O UN T A M O UN T
(USD)](USD)]

 With ISSUBTOTAL

 ExampleExample

SUMMARIZE(ResellerSales_USD
 , ROLLUP(DateTime[CalendarYear], ProductCategory[ProductCategoryName])
 , "Sales Amount (USD)", SUM(ResellerSales_USD[SalesAmount_USD])
 , "Discount Amount (USD)", SUM(ResellerSales_USD[DiscountAmount])
 , "Is Sub Total for DateTimeCalendarYear", ISSUBTOTAL(DateTime[CalendarYear])
 , "Is Sub Total for ProductCategoryName", ISSUBTOTAL(ProductCategory[ProductCategoryName])
)

[IS SUB TOTA L[IS SUB TOTA L
F O RF O R
DAT ET IM EC A L ENDAT ET IM EC A L EN
DA RY EA R]DA RY EA R]

[IS SUB TOTA L[IS SUB TOTA L
F O RF O R
P RO DUC TC AT EGP RO DUC TC AT EG
O RY N A M E]O RY N A M E]

DAT ET IM E[C A L EDAT ET IM E[C A L E
N DA RY EA R]N DA RY EA R]

P RO DUC TC AT EGP RO DUC TC AT EG
O RY [P RO DUC TCO RY [P RO DUC TC
AT EGO RY N A M E]AT EGO RY N A M E]

[SA L ES A M O UN T[SA L ES A M O UN T
(USD)](USD)]

[DISC O UN T[DISC O UN T
A M O UN T (USD)]A M O UN T (USD)]

FALSE FALSE

FALSE FALSE 2008 Bikes 12968255.42 36167.6592

FALSE FALSE 2005 Bikes 6958251.043 4231.1621

FALSE FALSE 2006 Bikes 18901351.08 178175.8399

FALSE FALSE 2007 Bikes 24256817.5 276065.992

FALSE FALSE 2008 Components 2008052.706 39.9266

FALSE FALSE 2005 Components 574256.9865 0

FALSE FALSE 2006 Components 3428213.05 948.7674

FALSE FALSE 2007 Components 5195315.216 4226.0444

FALSE FALSE 2008 Clothing 366507.844 4151.1235

FALSE FALSE 2005 Clothing 31851.1628 90.9593

FALSE FALSE 2006 Clothing 455730.9729 4233.039

With ISSUBTOTAL, you can create another column in the SUMMARIZE expression that returns True if the row

contains subtotal values for the column given as argument to ISSUBTOTAL, otherwise returns False. ISSUBTOTAL

can only be used within a SUMMARIZE expression.

The following sample generates an ISSUBTOTAL column for each of the ROLLUP columns in the given

SUMMARIZE function call:

Returns the following table,

FALSE FALSE 2007 Clothing 815853.2868 12489.3835

FALSE FALSE 2008 Accessories 153299.924 865.5945

FALSE FALSE 2005 Accessories 18594.4782 4.293

FALSE FALSE 2006 Accessories 86612.7463 1061.4872

FALSE FALSE 2007 Accessories 275794.8403 4756.6546

FALSE TRUE

FALSE TRUE 2008 15496115.89 41224.3038

FALSE TRUE 2005 7582953.67 4326.4144

FALSE TRUE 2006 22871907.85 184419.1335

FALSE TRUE 2007 30543780.84 297538.0745

TRUE TRUE 76494758.25 527507.9262

[IS SUB TOTA L[IS SUB TOTA L
F O RF O R
DAT ET IM EC A L ENDAT ET IM EC A L EN
DA RY EA R]DA RY EA R]

[IS SUB TOTA L[IS SUB TOTA L
F O RF O R
P RO DUC TC AT EGP RO DUC TC AT EG
O RY N A M E]O RY N A M E]

DAT ET IM E[C A L EDAT ET IM E[C A L E
N DA RY EA R]N DA RY EA R]

P RO DUC TC AT EGP RO DUC TC AT EG
O RY [P RO DUC TCO RY [P RO DUC TC
AT EGO RY N A M E]AT EGO RY N A M E]

[SA L ES A M O UN T[SA L ES A M O UN T
(USD)](USD)]

[DISC O UN T[DISC O UN T
A M O UN T (USD)]A M O UN T (USD)]

 See also
SUMMARIZECOLUMNS

SUMMARIZECOLUMNS
 10/26/2021 • 5 minutes to read

 Syntax

SUMMARIZECOLUMNS(<groupBy_columnName> [, < groupBy_columnName >]…, [<filterTable>]…[, <name>, <expression>]
…)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

groupBy_columnName A fully qualified column reference (Table[Column]) to a base
table for which the distinct values are included in the
returned table. Each groupBy_columnName column is cross-
joined (different tables) or auto-existed (same table) with the
subsequent specified columns.

filterTable A table expression which is added to the filter context of all
columns specified as groupBy_columnName arguments. The
values present in the filter table are used to filter before
cross-join/auto-exist is performed.

name A string representing the column name to use for the
subsequent expression specified.

expression Any DAX expression that returns a single value (not a table).

 Return value

 Remarks

 Filter context

Returns a summary table over a set of groups.

A table which includes combinations of values from the supplied columns based on the grouping specified. Only

rows for which at least one of the supplied expressions return a non-blank value are included in the table

returned. If all expressions evaluate to BLANK/NULL for a row, that row is not included in the table returned.

This function does not guarantee any sort order for the results.

A column cannot be specified more than once in the groupBy_columnName parameter. For example, the

following formula is invalid.

SUMMARIZECOLUMNS(Sales[StoreId], Sales[StoreId])

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

Consider the following query:

SUMMARIZECOLUMNS (
 'Sales Territory'[Category],
 FILTER('Customer', 'Customer' [First Name] = "Alicia")
)

SUMMARIZECOLUMNS (
 'Sales Territory'[Category], 'Customer' [Education],
 FILTER('Customer', 'Customer'[First Name] = "Alicia")
)

 With IGNORE

 ExampleExample

SUMMARIZECOLUMNS(
 Sales[CustomerId], "Total Qty",
 IGNORE(SUM(Sales[Qty])),
 "BlankIfTotalQtyIsNot3", IF(SUM(Sales[Qty])=3, 3)
)

C USTO M ERIDC USTO M ERID TOTA LQT YTOTA LQT Y B L A N K IF TOTA LQT Y ISN OT 3B L A N K IF TOTA LQT Y ISN OT 3

A 5

B 3 3

C 3 3

C USTO M ERIDC USTO M ERID TOTA LQT YTOTA LQT Y B L A N K IF TOTA LQT Y ISN OT 3B L A N K IF TOTA LQT Y ISN OT 3

B 3 3

C 3 3

In this query, without a measure the groupBy columns do not contain any columns from the FILTER expression

(for example, from Customer table). The filter is not applied to the groupBy columns. The Sales Territory and

Customer tables may be indirectly related through the Reseller sales fact table. Since they're not directly related,

the filter expression is a no-op and the groupBy columns are not impacted.

However, with this query:

The groupBy columns contain a column which is impacted by the filter and that filter is applied to the groupBy

results.

The IGNORE syntax can be used to modify the behavior of the SUMMARIZECOLUMNS function by omitting

specific expressions from the BLANK/NULL evaluation. Rows for which all expressions not using IGNORE return

BLANK/NULL will be excluded independent of whether the expressions which do use IGNORE evaluate to

BLANK/NULL or not. IGNORE can only be used within a SUMMARIZECOLUMNS expression.

This rolls up the Sales[CustomerId] column, creating a subtotal for all customers in the given grouping. Without

IGNORE, the result is:

With IGNORE,

All expression ignored,

SUMMARIZECOLUMNS(
 Sales[CustomerId], "Blank",
 IGNORE(Blank()), "BlankIfTotalQtyIsNot5",
 IGNORE(IF(SUM(Sales[Qty])=5, 5))
)

C USTO M ERIDC USTO M ERID TOTA LQT YTOTA LQT Y B L A N K IF TOTA LQT Y ISN OT 3B L A N K IF TOTA LQT Y ISN OT 3

A 5

B

C

 With NONVISUAL

 ExampleExample

DEFINE
MEASURE FactInternetSales[Sales] = SUM(FactInternetSales[Sales Amount])
EVALUATE
SUMMARIZECOLUMNS
(
 DimDate[CalendarYear],
 NONVISUAL(TREATAS({2007, 2008}, DimDate[CalendarYear])),
 "Sales", [Sales],
 "Visual Total Sales", CALCULATE([Sales], ALLSELECTED(DimDate[CalendarYear]))
)
ORDER BY [CalendarYear]

DIM DAT E[C A L EN DA RY EA R]DIM DAT E[C A L EN DA RY EA R] [SA L ES][SA L ES] [VISUA L TOTA L SA L ES][VISUA L TOTA L SA L ES]

2007 9,791,060.30 29,358,677.22

2008 9,770,899.74 29,358,677.22

Even though both expressions return blank for some rows, they're included since there are no unignored

expressions which return blank.

The NONVISUAL function marks a value filter in SUMMARIZECOLUMNS function as not affecting measure

values, but only applying to groupBy columns. NONVISUAL can only be used within a SUMMARIZECOLUMNS

expression.

Returns the result where [Visual Total Sales] is the total across all years:

In contrast, the same query without the NONVISUAL function:

DEFINE
MEASURE FactInternetSales[Sales] = SUM(FactInternetSales[Sales Amount])
EVALUATE
SUMMARIZECOLUMNS
(
 DimDate[CalendarYear],
 TREATAS({2007, 2008}, DimDate[CalendarYear]),
 "Sales", [Sales],
 "Visual Total Sales", CALCULATE([Sales], ALLSELECTED(DimDate[CalendarYear]))
)
ORDER BY [CalendarYear]

DIM DAT E[C A L EN DA RY EA R]DIM DAT E[C A L EN DA RY EA R] [SA L ES][SA L ES] [VISUA L TOTA L SA L ES][VISUA L TOTA L SA L ES]

2007 9,791,060.30 19,561,960.04

2008 9,770,899.74 19,561,960.04

 With ROLLUPADDISSUBTOTAL

 Example with single subtotalExample with single subtotal

DEFINE
VAR vCategoryFilter =
 TREATAS({"Accessories", "Clothing"}, Product[Category])
VAR vSubcategoryFilter =
 TREATAS({"Bike Racks", "Mountain Bikes"}, Product[Subcategory])
EVALUATE
 SUMMARIZECOLUMNS
 (
 ROLLUPADDISSUBTOTAL
 (
 Product[Category], "IsCategorySubtotal", vCategoryFilter,
 Product[Subcategory], "IsSubcategorySubtotal", vSubcategoryFilter
),
 "Total Qty", SUM(Sales[Qty])
)
 ORDER BY
 [IsCategorySubtotal] DESC, [Category],
 [IsSubcategorySubtotal] DESC, [Subcategory]

C AT EGO RYC AT EGO RY SUB C AT EGO RYSUB C AT EGO RY
ISC AT EGO RY SUBTOTISC AT EGO RY SUBTOT
A LA L

ISSUB C AT EGO RY SUBISSUB C AT EGO RY SUB
TOTA LTOTA L TOTA L QT YTOTA L QT Y

True True 60398

Accessories False True 36092

Accessories Bike Racks False False 328

Returns the result where [Visual Total Sales] is the total across the two selected years:

The addition of the ROLLUPADDISSUBTOTAL syntax modifies the behavior of the SUMMARIZECOLUMNS

function by adding rollup/subtotal rows to the result based on the groupBy_columnName columns.

ROLLUPADDISSUBTOTAL can only be used within a SUMMARIZECOLUMNS expression.

Returns the following table,

Bikes Mountain Bikes False False 4970

Clothing False True 9101

C AT EGO RYC AT EGO RY SUB C AT EGO RYSUB C AT EGO RY
ISC AT EGO RY SUBTOTISC AT EGO RY SUBTOT
A LA L

ISSUB C AT EGO RY SUBISSUB C AT EGO RY SUB
TOTA LTOTA L TOTA L QT YTOTA L QT Y

 Example with multiple subtotalsExample with multiple subtotals

SUMMARIZECOUMNS (
 Regions[State], ROLLUPADDISSUBTOTAL (Sales[CustomerId], "IsCustomerSubtotal"),
 ROLLUPADDISSUBTOTAL (Sales[Date], "IsDateSubtotal"), "Total Qty", SUM(Sales[Qty])
)

C USTO M ERIDC USTO M ERID
ISC USTO M ERSUBISC USTO M ERSUB
TOTA LTOTA L STAT ESTAT E TOTA L QT YTOTA L QT Y DAT EDAT E ISDAT ESUBTOTA LISDAT ESUBTOTA L

A FALSE WA 5 7/10/2014

B FALSE WA 1 7/10/2014

B FALSE WA 2 7/11/2014

C FALSE OR 2 7/10/2014

C FALSE OR 1 7/11/2014

TRUE WA 6 7/10/2014

TRUE WA 2 7/11/2014

TRUE OR 2 7/10/2014

TRUE OR 1 7/11/2014

A FALSE WA 5 TRUE

B FALSE WA 3 TRUE

C FALSE OR 3 TRUE

TRUE WA 8 TRUE

TRUE OR 3 TRUE

 With ROLLUPGROUP

Sales is grouped by state, by customer, by date, with subtotals for 1. Sales by state, by date 2. Sales by State, by

Customer 3. Rolled up on both customer and date leading to sales by state.

Returns the following table,

Like with the SUMMARIZE function, ROLLUPGROUP can be used together with ROLLUPADDISSUBTOTAL to

specify which summary groups/granularities (subtotals) to include, reducing the number of subtotal rows

 Example with multiple subtotalsExample with multiple subtotals

SUMMARIZECOLUMNS(
 ROLLUPADDISSUBTOTAL(Sales[CustomerId], "IsCustomerSubtotal"),
 ROLLUPADDISSUBTOTAL(ROLLUPGROUP(Regions[City], Regions[State]), "IsCityStateSubtotal"),"Total Qty", SUM(
Sales[Qty])
)

STAT ESTAT E C USTO M ERIDC USTO M ERID
ISC USTO M ERSUBISC USTO M ERSUB
TOTA LTOTA L TOTA L QT YTOTA L QT Y C IT YC IT Y

ISC IT Y STAT ESUBISC IT Y STAT ESUB
TOTA LTOTA L

WA A FALSE 2 Bellevue FALSE

WA B FALSE 2 Bellevue FALSE

WA A FALSE 3 Redmond FALSE

WA B FALSE 1 Redmond FALSE

OR C FALSE 3 Portland FALSE

WA TRUE 4 Bellevue FALSE

WA TRUE 4 Redmond FALSE

OR TRUE 3 Portland FALSE

A FALSE 5 FALSE

B FALSE 3 TRUE

C FALSE 3 TRUE

TRUE 11 TRUE

 See also

returned. ROLLUPGROUP can only be used within a SUMMARIZECOLUMNS or SUMMARIZE expression.

Still grouped by City and State, but rolled together when reporting a subtotal returns the following table,

SUMMARIZE

Table constructor
 10/26/2021 • 2 minutes to read

 Syntax

{ <scalarExpr1>, <scalarExpr2>, … }
{ (<scalarExpr1>, <scalarExpr2>, …), (<scalarExpr1>, <scalarExpr2>, …), … }

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

scalarExprN Any DAX expression that returns a scalar value.

 Return value

 Remarks

 Example 1

EVALUATE { 1, 2, 3 }

EVALUATE { (1), (2), (3) }

[VA L UE][VA L UE]

1

2

Returns a table of one or more columns.

A table of one or more columns. When there is only one column, the name of the column is Value. When there

are N columns where N > 1, the names of the columns from left to right are Value1, Value2, …, ValueN.

The first syntax returns a table of a single column. The second syntax returns a table of one or more

columns.

The number of scalar expressions must be the same for all rows.

When the data types of the values for a column are different in different rows, all values are converted to

a common data type.

The following DAX queries:

and

Return the following table of a single column:

3

[VA L UE][VA L UE]

 Example 2Example 2

EVALUATE
 {
 (1.5, DATE(2017, 1, 1), CURRENCY(199.99), "A"),
 (2.5, DATE(2017, 1, 2), CURRENCY(249.99), "B"),
 (3.5, DATE(2017, 1, 3), CURRENCY(299.99), "C")
 }

[VA L UE1][VA L UE1] [VA L UE2][VA L UE2] [VA L UE3][VA L UE3] [VA L UE4][VA L UE4]

1.5 1/1/2017 199.99 A

2.5 1/2/2017 249.99 B

3.5 1/3/2017 299.99 C

 Example 3Example 3

EVALUATE { 1, DATE(2017, 1, 1), TRUE, "A" }

[VA L UE][VA L UE]

1

1/1/2017

TRUE

A

The following DAX query:

Returns,

The following DAX query:

Returns the following table of a single column of String data type:

TOPN
 10/26/2021 • 2 minutes to read

 Syntax

TOPN(<n_value>, <table>, <orderBy_expression>, [<order>[, <orderBy_expression>, [<order>]]…])

 ParametersParameters

VA L UEVA L UE A LT ERN AT E VA L UEA LT ERN AT E VA L UE DESC RIP T IO NDESC RIP T IO N

0 (zero) FALSE Sorts in descending order of values of
order_by.

This is the default value when order
parameter is omitted.

1 TRUE Ranks in ascending order of order_by.

 Return value

 Remarks

Returns the top N rows of the specified table.

The number of rows to return. It is any DAX expression that returns a single scalar value, where the expression is

to be evaluated multiple times (for each row/context).

See the remarks section to understand when the number of rows returned could possible be larger than

n_value.

See the remarks section to understand when an empty table is returned.

tabletable Any DAX expression that returns a table of data from where to extract the top 'n' rows.

orderBy_expressionorderBy_expression

Any DAX expression where the result value is used to sort the table and it is evaluated for each row of table.

orderorder (Optional) A value that specifies how to sort orderBy_expression values, ascending or descending:

A table with the top N rows of table or an empty table if n_value is 0 (zero) or less. Rows are not necessarily

sorted in any particular order.

If there is a tie, in order_by values, at the N-th row of the table, then all tied rows are returned. Then, when

there are ties at the N-th row the function might return more than n rows.

If n_value is 0 (zero) or less then TOPN returns an empty table.

TOPN does not guarantee any sort order for the results.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

Example

= SUMX(TOPN(10, SUMMARIZE(Product, [ProductKey], "TotalSales",
SUMX(RELATED(InternetSales_USD[SalesAmount_USD]), InternetSales_USD[SalesAmount_USD]) +
SUMX(RELATED(ResellerSales_USD[SalesAmount_USD]), ResellerSales_USD[SalesAmount_USD]))

The following sample creates a measure with the sales of the top 10 sold products.

TREATAS
 10/26/2021 • 2 minutes to read

 Syntax

TREATAS(table_expression, <column>[, <column>[, <column>[,…]]]})

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

table_expression An expression that results in a table.

column One or more existing columns. It cannot be an expression.

 Return value

 Remarks

 Example

CALCULATE(
SUM(Sales[Amount]),
TREATAS(VALUES(DimProduct1[ProductCategory]), DimProduct2[ProductCategory])
)

 See also

Applies the result of a table expression as filters to columns from an unrelated table.

A table that contains all the rows in column(s) that are also in table_expression.

The number of columns specified must match the number of columns in the table expression and be in

the same order.

If a value returned in the table expression does not exist in the column, it is ignored. For example,

TREATAS({"Red", "Green", "Yellow"}, DimProduct[Color]) sets a filter on column DimProduct[Color] with

three values "Red", "Green", and "Yellow". If "Yellow" does not exist in DimProduct[Color], the effective

filter values would are "Red" and "Green".

Best for use when a relationship does not exist between the tables. If you have multiple relationships

between the tables involved, consider using USERELATIONSHIP instead.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

In the following example, the model contains two unrelated product tables. If a user applies a filter to

DimProduct1[ProductCategory] selecting Bikes, Seats, Tires, the same filter, Bikes, Seats, Tires is applied to

DimProduct2[ProductCategory].

INTERSECT

FILTER

USERELATIONSHIP

UNION
 10/26/2021 • 2 minutes to read

 Syntax

UNION(<table_expression1>, <table_expression2> [,<table_expression>]…)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

table_expression Any DAX expression that returns a table.

 Return value

 Remarks

 Example

UNION(UsaInventory, IndInventory)

Creates a union (join) table from a pair of tables.

A table that contains all the rows from each of the two table expressions.

The two tables must have the same number of columns.

Columns are combined by position in their respective tables.

The column names in the return table will match the column names in table_expression1.

Duplicate rows are retained.

The returned table has lineage where possible. For example, if the first column of each table_expression

has lineage to the same base column C1 in the model, the first column in the UNION result will have

lineage to C1. However, if combined columns have lineage to different base columns, or if there is an

extension column, the resulting column in UNION will have no lineage.

When data types differ, the resulting data type is determined based on the rules for data type coercion.

The returned table will not contain columns from related tables.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following expression creates a union by combining the USAInventory table and the INDInventory table into

a single table:

USAInventor yUSAInventor y

C O UN T RYC O UN T RY STAT ESTAT E C O UN TC O UN T TOTA LTOTA L

USA CA 5 500

USA WA 10 900

C O UN T RYC O UN T RY STAT ESTAT E C O UN TC O UN T TOTA LTOTA L

IND JK 20 800

IND MH 25 1000

IND WB 10 900

C O UN T RYC O UN T RY STAT ESTAT E C O UN TC O UN T TOTA LTOTA L

USA CA 5 500

USA WA 10 900

IND JK 20 800

IND MH 25 1000

IND WB 10 900

INDInventor yINDInventor y

Return table,

VALUES
 10/26/2021 • 3 minutes to read

NOTENOTE

 Syntax

VALUES(<TableNameOrColumnName>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

TableName or ColumnName A column from which unique values are to be returned, or a
table from which rows are to be returned.

 Return value

 Remarks

 Related functions

When the input parameter is a column name, returns a one-column table that contains the distinct values from

the specified column. Duplicate values are removed and only unique values are returned. A BLANK value can be

added. When the input parameter is a table name, returns the rows from the specified table. Duplicate rows are

preserved. A BLANK row can be added.

This function cannot be used to Return values into a cell or column on a worksheet; rather, you use it as an intermediate

function, nested in a formula, to get a list of distinct values that can be counted or used to filter or sum other values.

When the input parameter is a column name, a single column table. When the input parameter is a table name,

a table of the same columns is returned.

When you use the VALUES function in a context that has been filtered, the unique values returned by

VALUES are affected by the filter. For example, if you filter by Region, and return a list of the values for

City, the list will include only those cities in the regions permitted by the filter. To return all of the cities,

regardless of existing filters, you must use the ALL function to remove filters from the table. The second

example demonstrates use of ALL with VALUES.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

For best practices when using VALUES, see Use SELECTEDVALUE instead of VALUES.

In most scenarios, when the argument is a column name, the results of the VALUES function are identical to

those of the DISTINCTDISTINCT function. Both functions remove duplicates and return a list of the possible values in the

specified column. However, the VALUES function can also return a blank value. This blank value is useful in cases

where you are looking up distinct values from a related table, but a value used in the relationship is missing

from one table. In database terminology, this is termed a violation of referential integrity. Such mismatches in

NOTENOTE

M Y O RDERS TA B L EM Y O RDERS TA B L E M Y SA L ES TA B L EM Y SA L ES TA B L E

June 1 June 1 sales

June 2 June 2 sales

(no order dates have been entered) June 3 sales

 Example

= COUNTROWS(VALUES('InternetSales_USD'[SalesOrderNumber]))

RO W L A B EL SRO W L A B EL S C O UN T IN VO IC ESC O UN T IN VO IC ES

Accessories 18,208

Bikes 15,205

Clothing 7,461

Grand Total 27,659

 See also

data can occur when one table is being updated and the related table is not.

When the argument is a table name, the result of the VALUES function returns all rows in the specified table plus

a blank row, if there is a violation of referential integrity. The DISTINCT function removes duplicate rows and

returns unique rows in the specified table.

The DISTINCT function allows a column name or any valid table expression to be its argument but the VALUES function

only accepts a column name or a table name as the argument.

The following table summarizes the mismatch between data that can occur in two related tables when

referential integrity is not preserved.

If you use the DISTINCT function to return a list of dates, only two dates would be returned. However, if you use

the VALUES function, the function returns the two dates plus an additional blank member. Also, any row from

the MySales table that does not have a matching date in the MyOrders table will be "matched" to this unknown

member.

The following formula counts the number of unique invoices (sales orders), and produces the following results

when used in a report that includes the Product Category Names:

Returns

FILTER function

COUNTROWS function

Filter functions

Text functions
 10/26/2021 • 2 minutes to read

 In this category

F UN C T IO NF UN C T IO N DESC RIP T IO NDESC RIP T IO N

COMBINEVALUES Joins two or more text strings into one text string.

CONCATENATE Joins two text strings into one text string.

CONCATENATEX Concatenates the result of an expression evaluated for each
row in a table.

EXACT Compares two text strings and returns TRUE if they are
exactly the same, FALSE otherwise.

FIND Returns the starting position of one text string within
another text string.

FIXED Rounds a number to the specified number of decimals and
returns the result as text.

FORMAT Converts a value to text according to the specified format.

LEFT Returns the specified number of characters from the start of
a text string.

LEN Returns the number of characters in a text string.

LOWER Converts all letters in a text string to lowercase.

MID Returns a string of characters from the middle of a text
string, given a starting position and length.

REPLACE REPLACE replaces part of a text string, based on the number
of characters you specify, with a different text string.

REPT Repeats text a given number of times.

RIGHT RIGHT returns the last character or characters in a text
string, based on the number of characters you specify.

SEARCH Returns the number of the character at which a specific
character or text string is first found, reading left to right.

Data Analysis Expressions (DAX) includes a set of text functions based on the library of string functions in Excel,

but which have been modified to work with tables and columns in tabular models. This section describes text

functions available in the DAX language.

SUBSTITUTE Replaces existing text with new text in a text string.

TRIM Removes all spaces from text except for single spaces
between words.

UNICHAR Returns the Unicode character referenced by the numeric
value.

UNICODE Returns the numeric code corresponding to the first
character of the text string.

UPPER Converts a text string to all uppercase letters.

VALUE Converts a text string that represents a number to a
number.

F UN C T IO NF UN C T IO N DESC RIP T IO NDESC RIP T IO N

COMBINEVALUES
 10/26/2021 • 2 minutes to read

 Syntax

COMBINEVALUES(<delimiter>, <expression>, <expression>[, <expression>]…)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

delimiter A separator to use during concatenation. Must be a
constant value.

expression A DAX expression whose value will be be joined into a single
text string.

 Return value

 Remarks

Joins two or more text strings into one text string. The primary purpose of this function is to support multi-

column relationships in DirectQuery models. See RemarksRemarks for details.

The concatenated string.

The COMBINEVALUES function assumes, but does not validate, that when the input values are different,

the output strings are also different. Based on this assumption, when COMBINEVALUES is used to create

calculated columns in order to build a relationship that joins multiple columns from two DirectQuery

tables, an optimized join condition is generated at query time. For example, if users want to create a

relationship between Table1(Column1, Column2) and Table2(Column1, Column2), they can create two

calculated columns, one on each table, as:

Table1[CalcColumn] = COMBINEVALUES(",", Table1[Column1], Table1[Column2])

and

Table2[CalcColumn] = COMBINEVALUES(",", Table2[Column1], Table2[Column2]) ,

And then create a relationship between Table1[CalcColumn] and Table2[CalcColumn] . Unlike other DAX

functions and operators, which are translated literally to the corresponding SQL operators and functions,

the above relationship generates a SQL join predicate as:

(Table1.Column1 = Table2.Column1 OR Table1.Column1 IS NULL AND Table2.Column1 IS NULL)

and

(Table1.Column2 = Table2.Column2 OR Table1.Column2 IS NULL AND Table2.Column2 IS NULL) .

The join predicate can potentially deliver much better query performance than one that involves complex

SQL operators and functions.

 Example

[M O N T H][M O N T H]

January,2007

February,2007

March,2007

April,2007

May,2007

June,2007

July,2007

August,2007

September,2007

October,2007

November,2007

December,2007

January,2008

January,2008

February,2008

March,2008

April,2008

The COMBINEVALUES function relies on users to choose the appropriate delimiter to ensure that unique

combinations of input values produce distinct output strings but it does not validate that the assumption

is true. For example, if users choose "| " as the delimiter, but one row in Table1 has

Table1[Column1] = "| " and Table2 [Column2] = " " , while one row in Table2 has Table2[Column1] = " "

and Table2[Column2] = "| " , the two concatenated outputs will be the same "|| " , which seem to

indicate that the two rows are a match in the join operation. The two rows are not joined together if both

tables are from the same DirectQuery source although they are joined together if both tables are

imported.

The following DAX query:

EVALUATE DISTINCT(SELECTCOLUMNS(DimDate, "Month", COMBINEVALUES(",", [MonthName], [CalendarYear])))

Returns the following single column table:

May,2008

June,2008

July,2008

August,2008

September,2008

October,2008

November,2008

December,2008

[M O N T H][M O N T H]

CONCATENATE
 10/26/2021 • 2 minutes to read

 Syntax

CONCATENATE(<text1>, <text2>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

text1, text2 The text strings to be joined into a single text string. Strings
can include text or numbers.

You can also use column references.

 Return value

 Remarks

 Example: Concatenation of Literals

= CONCATENATE("Hello ", "World")

 Example: Concatenation of Strings in Columns

Joins two text strings into one text string.

The concatenated string.

The CONCATENATE function joins two text strings into one text string. The joined items can be text,

numbers or Boolean values represented as text, or a combination of those items. You can also use a

column reference if the column contains appropriate values.

The CONCATENATE function in DAX accepts only two arguments, whereas the Excel CONCATENATE

function accepts up to 255 arguments. If you need to concatenate multiple columns, you can create a

series of calculations or, better, use the concatenation operator (&&) to join all of them in a simpler

expression.

If you want to use text strings directly, rather than using a column reference, you must enclose each string

in double quotation marks.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The sample formula creates a new string value by combining two string values that you provide as arguments.

The sample formula returns the customer's full name as listed in a phone book. Note how a nested function is

used as the second argument. This is one way to concatenate multiple strings, when you have more than two

= CONCATENATE(Customer[LastName], CONCATENATE(", ", Customer[FirstName]))

 Example: Conditional Concatenation of Strings in Columns

= CONCATENATE([FirstName]&" ", CONCATENATE(IF(LEN([MiddleName])>1, LEFT([MiddleName],1)&" ", ""),
[LastName]))

 Example: Concatenation of Columns with Different Data Types

P RO DUC T DESC RIP T IO NP RO DUC T DESC RIP T IO N

P RO DUC T A B B REVIAT IO NP RO DUC T A B B REVIAT IO N
(C O L UM N 1 O F(C O L UM N 1 O F
C O M P O SIT E KEY)C O M P O SIT E KEY)

P RO DUC T N UM B ERP RO DUC T N UM B ER
(C O L UM N 2 O F(C O L UM N 2 O F
C O M P O SIT E KEY)C O M P O SIT E KEY)

N EW GEN ERAT ED KEYN EW GEN ERAT ED KEY
C O L UM NC O L UM N

Mountain bike MTN 40 MTN40

Mountain bike MTN 42 MTN42

= CONCATENATE('Products'[Product abbreviation],'Products'[Product number])

= [Product abbreviation] & "-" & [Product number]

 See also

values that you want to use as arguments.

The sample formula creates a new calculated column in the Customer table with the full customer name as a

combination of first name, middle initial, and last name. If there is no middle name, the last name comes directly

after the first name. If there is a middle name, only the first letter of the middle name is used and the initial letter

is followed by a period.

This formula uses nested CONCATENATE and IF functions, together with the ampersand (&&) operator, to

conditionally concatenate three string values and add spaces as separators.

The following example demonstrates how to concatenate values in columns that have different data types. If the

value that you are concatenating is numeric, the value will be implicitly converted to text. If both values are

numeric, both values will be cast to text and concatenated as if they were strings.

The CONCATENATE function in DAX accepts only two arguments, whereas the Excel CONCATENATE function

accepts up to 255 arguments. If you need to add more arguments, you can use the ampersand (&) operator. For

example, the following formula produces the results, MTN-40 and MTN-42.

Text functions

CONCATENATEX
 10/26/2021 • 2 minutes to read

 Syntax

CONCATENATEX(<table>, <expression>[, <delimiter> [, <orderBy_expression> [, <order>]]...])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

table The table containing the rows for which the expression will
be evaluated.

expression The expression to be evaluated for each row of table.

delimiter (Optional) A separator to use during concatenation.

orderBy_expression (Optional) Any DAX expression where the result value is
used to sort the concatenated values in the output string. It
is evaluated for each row of table.

order (Optional) A value that specifies how to sort
orderBy_expression values, ascending or descending.

VA L UEVA L UE A LT ERN AT E VA L UESA LT ERN AT E VA L UES DESC RIP T IO NDESC RIP T IO N

0 (zero) FALSE, DESC Sorts in descending order of values of
orderBy_expression.
This is the default value when the
order parameter is omitted.

1 TRUE, ASC Sorts in ascending order of values of
orderBy_expression.

 Return value

 Remarks

Concatenates the result of an expression evaluated for each row in a table.

The orderorder parameter accepts the following values:

A text string.

This function takes as its first argument a table or an expression that returns a table. The second

argument is a column that contains the values you want to concatenate, or an expression that returns a

value.

Concatenated values are not necessarily sorted in any particular order, unless orderBy_expression is

 Example

F IRST N A M EF IRST N A M E L A ST N A M EL A ST N A M E

Alan Brewer

Michael Blythe

CONCATENATEX(Employees, [FirstName] & " " & [LastName], ",")

specified.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

Employees table

The following formula:

Returns:

"Alan Brewer, Michael Blythe"

EXACT
 10/26/2021 • 2 minutes to read

 Syntax

EXACT(<text1>,<text2>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

text1 The first text string or column that contains text.

text2 The second text string or column that contains text.

 Return value

 Example

= EXACT([Column1],[Column2])

 See also

Compares two text strings and returns TRUE if they are exactly the same, FALSE otherwise. EXACT is case-

sensitive but ignores formatting differences. You can use EXACT to test text being entered into a document.

True or false. (Boolean)

The following formula checks the value of Column1 for the current row against the value of Column2 for the

current row, and returns TRUE if they are the same, and returns FALSE if they are different.

Text functions

FIND
 10/26/2021 • 2 minutes to read

 Syntax

FIND(<find_text>, <within_text>[, [<start_num>][, <NotFoundValue>]])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

find_text The text you want to find. Use double quotes (empty text) to
match the first character in within_textwithin_text .

within_text The text containing the text you want to find.

start_num (optional) The character at which to start the search; if
omitted, star t_numstar t_num = 1. The first character in within_textwithin_text
is character number 1.

NotFoundValue (optional) The value that should be returned when the
operation does not find a matching substring, typically 0, -1,
or BLANK().

 Return value

 Remarks

 Example

= FIND("BMX","line of BMX racing goods")

Returns the starting position of one text string within another text string. FIND is case-sensitive.

Number that shows the starting point of the text string you want to find.

Whereas Microsoft Excel has multiple versions of the FIND function to accommodate single-byte

character set (SBCS) and double-byte character set (DBCS) languages, DAX uses Unicode and counts each

character the same way; therefore, you do not need to use a different version depending on the character

type.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

FIND does not support wildcards. To use wildcards, use SEARCH.

The following formula finds the position of the first letter of the product designation, BMX, in the string that

contains the product description.

 See also
Text functions

FIXED
 10/26/2021 • 2 minutes to read

 Syntax

FIXED(<number>, <decimals>, <no_commas>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number The number you want to round and convert to text, or a
column containing a number.

decimals (optional) The number of digits to the right of the decimal
point; if omitted, 2.

no_commas (optional) A logical value: if 1, do not display commas in the
returned text; if 0 or omitted, display commas in the
returned text.

 Return value

 Remarks

 Example

= FIXED([PctCost],3,1)

Rounds a number to the specified number of decimals and returns the result as text. You can specify that the

result be returned with or without commas.

A number represented as text.

If the value used for the decimalsdecimals parameter is negative, numbernumber is rounded to the left of the decimal

point.

If you omit decimalsdecimals , it is assumed to be 2.

If no_commasno_commas is 0 or is omitted, then the returned text includes commas as usual.

The major difference between formatting a cell containing a number by using a command and formatting

a number directly with the FIXED function is that FIXED converts its result to text. A number formatted

with a command from the formatting menu is still a number.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following example gets the numeric value for the current row in column, PctCost, and returns it as text with

4 decimal places and no commas.

 See also

Numbers can never have more than 15 significant digits, but decimals can be as large as 127.

Text functions

Math and Trig functions

FORMAT
 10/26/2021 • 13 minutes to read

 Syntax

FORMAT(<value>, <format_string>[, <locale_name>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

value A value or expression that evaluates to a single value.

format_string A string with the formatting template.

locale_name (Optional) Name of the locale to be used by the function.
Possible values are strings accepted by the Windows API
function LocaleNameToLCID().

 Return value

NOTENOTE

 Remarks

Converts a value to text according to the specified format.

A string containing valuevalue formatted as defined by format_str ingformat_str ing.

If valuevalue is BLANK, the function returns an empty string.

If format_stringformat_string is BLANK, the value is formatted with a "General Number" or "General Date" format (according to valuevalue

data type).

Predefined format strings use the model culture property when formatting the result. By default, the

model culture property is set according to the user locale of the computer. For new Power BI Desktop

models, the model culture property can be changed in Options > Regional Settings > Model language.

For Analysis Services, model culture is set according to the Language property initially defined by the

instance.

The format strings supported as an argument to the DAX FORMAT function are based on the format

strings used by Visual Basic (OLE Automation), not on the format strings used by the .NET Framework.

Therefore, you might get unexpected results or an error if the argument doesn't match any defined

format strings. For example, "p" as an abbreviation for "Percent" isn't supported. Strings that you provide

as an argument to the FORMAT function that aren't included in the list of predefined format strings are

handled as part of a custom format string, or as a string literal.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

https://docs.microsoft.com/en-us/windows/win32/api/winnls/nf-winnls-localenametolcid

 Examples
 Format stringsFormat strings

= FORMAT(12345.67, "General Number")
= FORMAT(12345.67, "Currency")
= FORMAT(12345.67, "Fixed")
= FORMAT(12345.67, "Standard")
= FORMAT(12345.67, "Percent")
= FORMAT(12345.67, "Scientific")

 Datetime with optional locale_nameDatetime with optional locale_name

= FORMAT(dt"2020-12-15T12:30:59", BLANK(), "en-US")
= FORMAT(dt"2020-12-15T12:30:59", BLANK(), "en-GB")
= FORMAT(dt"2020-12-15T12:30:59", "mm/dd/yyyy", "en-GB")

 Predefined numeric formats

F O RM ATF O RM AT DESC RIP T IO NDESC RIP T IO N

"General Number" Displays number with no thousand separators.

"Currency" Displays number with thousand separators, if appropriate;
displays two digits to the right of the decimal separator.
Output is based on system locale settings.

"Fixed" Displays at least one digit to the left and two digits to the
right of the decimal separator.

Returns:

12345.6712345.67 "General Number" displays the number with no formatting.

$12,345.67$12,345.67 "Currency" displays the number with your currency locale formatting. The sample here shows the

default United States currency formatting.

12345.6712345.67 "Fixed" displays at least one digit to the left of the decimal separator and two digits to the right of the

decimal separator.

12,345.6712,345.67 "Standard" displays at least one digit to the left of the decimal separator and two digits to the right

of the decimal separator, and includes thousand separators. The sample here shows the default United States

number formatting.

1,234,567.00 %1,234,567.00 % "Percent" displays the number as a percentage (multiplied by 100) with formatting and the

percent sign at the right of the number separated by a single space.

1.23E+041.23E+04 "Scientific" displays the number in scientific notation with two decimal digits.

Returns:

12/15/2020 12:30:59 PM12/15/2020 12:30:59 PM Where month precedes day and time is 12-hour format.

15/12/2020 12:30:5915/12/2020 12:30:59 Where day precedes month and time is 24-hour format.

12/15/2020 12:30:5912/15/2020 12:30:59 Where month precedes day and time is 24-hour format. Because a non-locale

dependent format string is specified, the locale is not applied and the non-locale format is returned.

The following predefined numeric formats can be specified in the format_str ingformat_str ing argument:

"Standard" Displays number with thousand separators, at least one digit
to the left and two digits to the right of the decimal
separator.

"Percent" Displays number multiplied by 100 with a percent sign (%)
appended immediately to the right; always displays two
digits to the right of the decimal separator.

"Scientific" Uses standard scientific notation, providing two significant
digits.

"Yes/No" Displays No if number is 0; otherwise, displays Yes.

"True/False" Displays False if number is 0; otherwise, displays True.

"On/Off" Displays Off if number is 0; otherwise, displays On.

F O RM ATF O RM AT DESC RIP T IO NDESC RIP T IO N

 Custom numeric formats

IF Y O U USEIF Y O U USE T H E RESULT IST H E RESULT IS

One section only The format expression applies to all values.

Two sections The first section applies to positive values and zeros, the
second to negative values.

Three sections The first section applies to positive values, the second to
negative values, and the third to zeros.

"$#,##0;($#,##0)"

"$#,##0"

 Custom numeric format charactersCustom numeric format characters

C H A RA C T ERC H A RA C T ER DESC RIP T IO NDESC RIP T IO N

None Display the number with no formatting.

A custom format expression for numbers can have from one to three sections separated by semicolons. If the

format string argument contains one of the named numeric formats, only one section is allowed.

If you include semicolons with nothing between them, the missing section is defined using the format of the

positive value. For example, the following format displays positive and negative values using the format in the

first section and displays "Zero" if the value is zero.

If you include semicolons with nothing between them, the missing section is shown using the format of the

positive value.

The following custom numeric format characters can be specified in the format_str ingformat_str ing argument:

(00) Digit placeholder. Display a digit or a zero. If the expression
has a digit in the position where the 0 appears in the format
string, display it; otherwise, display a zero in that position.If
the number has fewer digits than there are zeros (on either
side of the decimal) in the format expression, display leading
or trailing zeros. If the number has more digits to the right
of the decimal separator than there are zeros to the right of
the decimal separator in the format expression, round the
number to as many decimal places as there are zeros. If the
number has more digits to the left of the decimal separator
than there are zeros to the left of the decimal separator in
the format expression, display the extra digits without
modification.

(##) Digit placeholder. Display a digit or nothing. If the expression
has a digit in the position where the # appears in the format
string, display it; otherwise, display nothing in that position.
This symbol works like the 0 digit placeholder, except that
leading and trailing zeros aren't displayed if the number has
the same or fewer digits than there are # characters on
either side of the decimal separator in the format expression.

(..) Decimal placeholder. In some locales, a comma is used as the
decimal separator. The decimal placeholder determines how
many digits are displayed to the left and right of the decimal
separator. If the format expression contains only number
signs to the left of this symbol, numbers smaller than 1
begin with a decimal separator. To display a leading zero
displayed with fractional numbers, use 0 as the first digit
placeholder to the left of the decimal separator. The actual
character used as a decimal placeholder in the formatted
output depends on the Number Format recognized by your
system.

(%)%) Percentage placeholder. The expression is multiplied by 100.
The percent character (%%) is inserted in the position where it
appears in the format string.

(,,) Thousand separator. In some locales, a period is used as a
thousand separator. The thousand separator separates
thousands from hundreds within a number that has four or
more places to the left of the decimal separator. Standard
use of the thousand separator is specified if the format
contains a thousand separator surrounded by digit
placeholders (00 or ##). Two adjacent thousand separators or a
thousand separator immediately to the left of the decimal
separator (whether or not a decimal is specified) means
"scale the number by dividing it by 1000, rounding as
needed." For example, you can use the format string "##0,,"
to represent 100 million as 100. Numbers smaller than 1
million are displayed as 0. Two adjacent thousand separators
in any position other than immediately to the left of the
decimal separator are treated simply as specifying the use of
a thousand separator. The actual character used as the
thousand separator in the formatted output depends on the
Number Format recognized by your system.

C H A RA C T ERC H A RA C T ER DESC RIP T IO NDESC RIP T IO N

(::) Time separator. In some locales, other characters may be
used to represent the time separator. The time separator
separates hours, minutes, and seconds when time values are
formatted. The actual character used as the time separator in
formatted output is determined by your system settings.

(//) Date separator. In some locales, other characters may be
used to represent the date separator. The date separator
separates the day, month, and year when date values are
formatted. The actual character used as the date separator in
formatted output is determined by your system settings.

(E- E+ e- e+E- E+ e- e+) Scientific format. If the format expression contains at least
one digit placeholder (00 or ##) to the right of E-, E+, e-, or
e+, the number is displayed in scientific format and E or e is
inserted between the number and its exponent. The number
of digit placeholders to the right determines the number of
digits in the exponent. Use E- or e- to place a minus sign
next to negative exponents. Use E+ or e+ to place a minus
sign next to negative exponents and a plus sign next to
positive exponents.

- + $- + $ () Display a literal character. To display a character other than
one of those listed, precede it with a backslash (\) or

enclose it in double quotation marks (" ").

(\\) Display the next character in the format string. To display a
character that has special meaning as a literal character,
precede it with a backslash (\). The backslash itself isn't

displayed. Using a backslash is the same as enclosing the
next character in double quotation marks. To display a
backslash, use two backslashes (\\). Examples of characters

that can't be displayed as literal characters are the date-
formatting and time-formatting characters (a, c, d, h, m, n, p,
q, s, t, w, y, /, and :), the numeric-formatting characters (#, 0,
%, E, e, comma, and period), and the string-formatting
characters (@, &, <, >, and !).

("ABC") Display the string inside the double quotation marks (" ").

C H A RA C T ERC H A RA C T ER DESC RIP T IO NDESC RIP T IO N

 Predefined date/time formats

F O RM ATF O RM AT DESC RIP T IO NDESC RIP T IO N

"General Date" Displays a date and/or time. For example, 3/12/2008
11:07:31 AM. Date display is determined by your
application's current culture value.

"Long Date" or "Medium Date" Displays a date according to your current culture's long date
format. For example, Wednesday, March 12, 2008.

The following predefined date/time formats can be specified in the format_str ingformat_str ing argument. When using

formats other than these, they are interpreted as a custom date/time format:

"Short Date" Displays a date using your current culture's short date
format. For example, 3/12/2008.

"Long Time" or Displays a time using your current culture's long time format;
typically includes hours, minutes, seconds. For example,
11:07:31 AM.

"Medium Time" Displays a time in 12 hour format. For example, 11:07 AM.

"Short Time" Displays a time in 24 hour format. For example, 11:07.

F O RM ATF O RM AT DESC RIP T IO NDESC RIP T IO N

 Custom date/time formats

C H A RA C T ERC H A RA C T ER DESC RIP T IO NDESC RIP T IO N

(::) Time separator. In some locales, other characters may be
used to represent the time separator. The time separator
separates hours, minutes, and seconds when time values are
formatted. The actual character used as the time separator in
formatted output is determined by your system settings.

(//) Date separator. In some locales, other characters may be
used to represent the date separator. The date separator
separates the day, month, and year when date values are
formatted. The actual character used as the date separator in
formatted output is determined by your system settings.

(\\) Backslash. Displays the next character as a literal character.
So, it's not interpreted as a formatting character.

("") Double quote. Text enclosed within double quotes is
displayed. So, it's not interpreted as formatting characters.

c Display the date as ddddd and display the time as ttttt ,

in that order. Display only date information if there is no
fractional part to the date serial number; display only time
information if there is no integer portion.

d Display the day as a number without a leading zero (1-31).

dd Display the day as a number with a leading zero (01-31).

ddd Display the day as an abbreviation (Sun-Sat). Localized.

dddd Display the day as a full name (Sunday-Saturday). Localized.

ddddd Display the date as a complete date (including day, month,
and year), formatted according to your system's short date
format setting. The default short date format is
mm/dd/yyyy .

The following format characters can be specified in the format_str ingformat_str ing to create custom date/time formats:

dddddd Display a date serial number as a complete date (including
day, month, and year) formatted according to the long date
setting recognized by your system. The default long date
format is dddd, mmmm d, yyyy .

w Display the day of the week as a number (1 for Sunday
through 7 for Saturday).

ww Display the week of the year as a number (1-54).

m Display the month as a number without a leading zero (1-
12). If m immediately follows h or hh , minute rather

than the month is displayed.

mm Display the month as a number with a leading zero (01-12).
If mm immediately follows h or hh , minute rather than

the month is displayed.

mmm Display the month as an abbreviation (Jan-Dec). Localized.

mmmm Display the month as a full month name (January-
December). Localized.

q Display the quarter of the year as a number (1-4).

y Display the day of the year as a number (1-366).

yy Display the year as a 2-digit number (00-99).

yyyy Display the year as a 4-digit number (100-9999).

h Display the hour as a number without a leading zero (0-23).

hh Display the hour as a number with a leading zero (00-23).

n Display the minute as a number without a leading zero (0-
59).

nn Display the minute as a number with a leading zero (00-59).

s Display the second as a number without a leading zero (0-
59).

ss Display the second as a number with a leading zero (00-59).

ttttt Display a time as a complete time (including hour, minute,
and second), formatted using the time separator defined by
the time format recognized by your system. A leading zero is
displayed if the leading zero option is selected and the time
is before 10:00 A.M. or P.M. The default time format is
h:mm:ss .

C H A RA C T ERC H A RA C T ER DESC RIP T IO NDESC RIP T IO N

AM/PM Use the 12-hour clock and display an uppercase AM with
any hour before noon; display an uppercase PM with any
hour between noon and 11:59 P.M.

am/pm Use the 12-hour clock and display a lowercase AM with any
hour before noon; display a lowercase PM with any hour
between noon and 11:59 P.M.

A/P Use the 12-hour clock and display an uppercase A with any
hour before noon; display an uppercase P with any hour
between noon and 11:59 P.M.

a/p Use the 12-hour clock and display a lowercase A with any
hour before noon; display a lowercase P with any hour
between noon and 11:59 P.M.

AMPM Use the 12-hour clock and display the AM string literal as
defined by your system with any hour before noon; display
the PM string literal as defined by your system with any
hour between noon and 11:59 P.M. AMPM can be either
uppercase or lowercase, but the case of the string displayed
matches the string as defined by your system settings. The
default format is AM/PM. If your system is set to 24-hour
clock, the string is typical set to an empty string.

C H A RA C T ERC H A RA C T ER DESC RIP T IO NDESC RIP T IO N

 Custom date/time format examplesCustom date/time format examples

F O RM ATF O RM AT RESULT (EN - US)RESULT (EN -US) RESULT (DE- DE)RESULT (DE- DE)

"c" 06/25/2020 13:23:45 25.06.2020 13:23:45

"d" 25 25

"dd" 25 25

"ddd" Thu Do

"dddd" Thursday Donnerstag

"ddddd" 06/25/2020 25.06.2020

"dddddd" Thursday, June 25, 2020 Donnerstag, 25. Juni 2020

"w" 5 5

Date/time formatting uses the current user locale to format the string. For example, consider the date June 25,

2020. When it's formatted using format string "m/d/yyyy" it will be:

User locale is United States of America (en-US): "6/25/2020"

User locale is Germany (de-DE): "6.25.2020"

The following examples use the date/time Thursday, June 25, 2020, at 1:23:45 PM. Germany (de-DE) uses a 24-

hour system. There's no equivalent of AM/PM.

"ww" 26 26

"m" 6 6

"mm" 06 06

"mmm" Jun Jun

"mmmm" June Juni

"q" 2 2

"y" 177 177

"yy" 20 20

"yyyy" 2020 2020

"""Year"" yyyy" Year 2020 Year 2020

"yyyy \Qq" 2020 Q2 2020 Q2

"dd/mm/yyyy" 25/06/2020 25.06.2020

"mm/dd/yyyy" 06/25/2020 06.25.2020

"h:nn:ss" 13:23:45 13:23:45

"h:nn:ss AMPM" 1:23:45 PM 1:23:45

"hh:nn:ss" 13:23:45 13:23:45

"hh:nn:ss AMPM" 01:23:45 PM 01:23:45

"ttttt" 13:23:45 13:23:45

"ttttt AMPM" 13:23:45 PM 13:23:45

"mm/dd/yyyy hh:nn:ss AMPM" 06/25/2020 01:23:45 PM 6.25.2020 01:23:45

F O RM ATF O RM AT RESULT (EN - US)RESULT (EN -US) RESULT (DE- DE)RESULT (DE- DE)

LEFT
 10/26/2021 • 2 minutes to read

 Syntax

LEFT(<text>, <num_chars>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

text The text string containing the characters you want to extract,
or a reference to a column that contains text.

num_chars (optional) The number of characters you want LEFT to
extract; if omitted, 1.

 Return value

 Remarks

 Example

= CONCATENATE(LEFT('Reseller'[ResellerName],LEFT(GeographyKey,3))

 See also

Returns the specified number of characters from the start of a text string.

A text string.

Whereas Microsoft Excel contains different functions for working with text in single-byte and double-byte

character languages, DAX works with Unicode and stores all characters as the same length; therefore, a

single function is enough.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following example returns the first five characters of the company name in the column [ResellerName] and

the first five letters of the geographical code in the column [GeographyKey] and concatenates them, to create an

identifier.

If the num_charsnum_chars argument is a number that is larger than the number of characters available, the function

returns the maximum characters available and does not raise an error. For example, the column [GeographyKey]

contains numbers such as 1, 12 and 311; therefore the result also has variable length.

Text functions

LEN
 10/26/2021 • 2 minutes to read

 Syntax

LEN(<text>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

text The text whose length you want to find, or a column that
contains text. Spaces count as characters.

 Return value

 Remarks

 Example

= LEN([AddressLine1])+LEN([AddressLin2])

Returns the number of characters in a text string.

A whole number indicating the number of characters in the text string.

Whereas Microsoft Excel has different functions for working with single-byte and double-byte character

languages, DAX uses Unicode and stores all characters with the same length.

LEN always counts each character as 1, no matter what the default language setting is.

If you use LEN with a column that contains non-text values, such as dates or Booleans, the function

implicitly casts the value to text, using the current column format.

The following formula sums the lengths of addresses in the columns, [AddressLine1] and [AddressLine2].

LOWER
 10/26/2021 • 2 minutes to read

 Syntax

LOWER(<text>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

text The text you want to convert to lowercase, or a reference to
a column that contains text.

 Return value

 Remarks

 Example

= LOWER('New Products'[ProductCode])

 See also

Converts all letters in a text string to lowercase.

Text in lowercase.

Characters that are not letters are not changed. For example, the formula = LOWER("123ABC") returns 123abc123abc.

The following formula gets each row in the column, [ProductCode], and converts the value to all lowercase.

Numbers in the column are not affected.

Text functions

MID
 10/26/2021 • 2 minutes to read

 Syntax

MID(<text>, <start_num>, <num_chars>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

text The text string from which you want to extract the
characters, or a column that contains text.

start_num The position of the first character you want to extract.
Positions start at 1.

num_chars The number of characters to return.

 Return value

 Remarks

 Examples

MID("abcde",2,3))

MID('Reseller'[ResellerName],1,5))

 See also

Returns a string of characters from the middle of a text string, given a starting position and length.

A string of text of the specified length.

Whereas Microsoft Excel has different functions for working with single-byte and double-byte characters

languages, DAX uses Unicode and stores all characters with the same length.

The following expression,

Returns "bcd""bcd".

The following expression,

Returns the same result as LEFT([ResellerName],5) . Both expressions return the first 5 letters of column,

[ResellerName] .

Text functions

REPLACE
 10/26/2021 • 2 minutes to read

 Syntax

REPLACE(<old_text>, <start_num>, <num_chars>, <new_text>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

old_text The string of text that contains the characters you want to
replace, or a reference to a column that contains text.

start_num The position of the character in old_textold_text that you want to
replace with new_textnew_text .

num_chars The number of characters that you want to replace.
Warning:Warning: If the argument, num_chars, is a blank or
references a column that evaluates to a blank, the string for
new_text is inserted at the position, start_num, without
replacing any characters. This is the same behavior as in
Excel.

new_text The replacement text for the specified characters in
old_textold_text .

 Return value

 Remarks

 Example

= REPLACE('New Products'[Product Code],1,2,"OB")

REPLACE replaces part of a text string, based on the number of characters you specify, with a different text

string.

A text string.

Whereas Microsoft Excel has different functions for use with single-byte and double-byte character

languages, DAX uses Unicode and therefore stores all characters as the same length.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following formula creates a new calculated column that replaces the first two characters of the product code

in column, [ProductCode], with a new two-letter code, OB.

See also
Text functions

SUBSTITUTE function

REPT
 10/26/2021 • 2 minutes to read

 Syntax

REPT(<text>, <num_times>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

text The text you want to repeat.

num_times A positive number specifying the number of times to repeat
text.

 Return value

 Remarks

 Example: Repeating Literal Strings

= REPT("85",3)

 Example: Repeating Column Values

= REPT([MyText],[MyNumber])

M Y T EXTM Y T EXT M Y N UM B ERM Y N UM B ER C A L C UL AT EDC O L UM N 1C A L C UL AT EDC O L UM N 1

Text 2 TextText

Repeats text a given number of times. Use REPT to fill a cell with a number of instances of a text string.

A string containing the changes.

If number_timesnumber_times is 0 (zero), REPT returns a blank.

If number_timesnumber_times is not an integer, it is truncated.

The result of the REPT function cannot be longer than 32,767 characters, or REPT returns an error.

The following example returns the string, 85, repeated three times.

The following example returns the string in the column, [MyText], repeated for the number of times in the

column, [MyNumber]. Because the formula extends for the entire column, the resulting string depends on the

text and number value in each row.

Number 0

85 3 858585

M Y T EXTM Y T EXT M Y N UM B ERM Y N UM B ER C A L C UL AT EDC O L UM N 1C A L C UL AT EDC O L UM N 1

 See also
Text functions

RIGHT
 10/26/2021 • 2 minutes to read

 Syntax

RIGHT(<text>, <num_chars>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

text The text string that contains the characters you want to
extract, or a reference to a column that contains text.

num_chars (optional) The number of characters you want RIGHT to
extract; is omitted, 1. You can also use a reference to a
column that contains numbers.

 Return value

 Remarks

 Example: Returning a Fixed Number of Characters

= RIGHT('New Products'[ProductCode],2)

 Example: Using a Column Reference to Specify Character Count

= RIGHT('New Products'[ProductCode],[MyCount])

RIGHT returns the last character or characters in a text string, based on the number of characters you specify.

If the column reference does not contain text, it is implicitly cast as text.

A text string containing the specified right-most characters.

RIGHT always counts each character, whether single-byte or double-byte, as 1, no matter what the default

language setting is.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following formula returns the last two digits of the product code in the New Products table.

The following formula returns a variable number of digits from the product code in the New Products table,

depending on the number in the column, MyCount. If there is no value in the column, MyCount, or the value is a

blank, RIGHT also returns a blank.

See also
Text functions

LEFT

MID

SEARCH
 10/26/2021 • 2 minutes to read

 Syntax

SEARCH(<find_text>, <within_text>[, [<start_num>][, <NotFoundValue>]])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

find_text The text that you want to find.

You can use wildcard characters — the question mark (?) and
asterisk (*) — in find_textfind_text . A question mark matches any
single character; an asterisk matches any sequence of
characters. If you want to find an actual question mark or
asterisk, type a tilde (~) before the character.

within_text The text in which you want to search for find_textfind_text , or a
column containing text.

start_num (optional) The character position in within_textwithin_text at which
you want to start searching. If omitted, 1.

NotFoundValue (optional) The value that should be returned when the
operation does not find a matching substring, typically 0, -1,
or BLANK().

 Return value

 Remarks

Returns the number of the character at which a specific character or text string is first found, reading left to right.

Search is case-insensitive and accent sensitive.

The number of the starting position of the first text string from the first character of the second text string.

The search function is case insensitive. Searching for "N" will find the first occurrence of 'N' or 'n'.

The search function is accent sensitive. Searching for "á" will find the first occurrence of 'á' but no

occurrences of 'a', 'à', or the capitalized versions 'A', 'Á'.

By using this function, you can locate one text string within a second text string, and return the position

where the first string starts.

You can use the SEARCH function to determine the location of a character or text string within another

text string, and then use the MID function to return the text, or use the REPLACE function to change the

text.

If the find_textfind_text cannot be found in within_textwithin_text, the formula returns an error. This behavior is like Excel,

which returns #VALUE if the substring is not found. Nulls in within_textwithin_text will be interpreted as an empty

 Example: Search within a String

= SEARCH("n","printer")

 Example: Search within a Column

= SEARCH("-",[PostalCode])

 Example: Error-Handling with SEARCH

= IFERROR(SEARCH("-",[PostalCode]),-1)

 See also

string in this context.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following formula finds the position of the letter "n" in the word "printer".

The formula returns 4 because "n" is the fourth character in the word "printer."

You can use a column reference as an argument to SEARCH. The following formula finds the position of the

character "-" (hyphen) in the column, [PostalCode].

The return result is a column of numbers, indicating the index position of the hyphen.

The formula in the preceding example will fail if the search string is not found in every row of the source

column. Therefore, the next example demonstrates how to use IFERROR with the SEARCH function, to ensure

that a valid result is returned for every row.

The following formula finds the position of the character "-" within the column, and returns -1 if the string is not

found.

The data type of the value that you use as an error output must match the data type of the non-error output

type. In this case, you provide a numeric value to be output in case of an error because SEARCH returns an

integer value. However, you could also return a blank (empty string) by using BLANK() as the second argument

to IFERROR.

MID

REPLACE

Text functions

SUBSTITUTE
 10/26/2021 • 2 minutes to read

 Syntax

SUBSTITUTE(<text>, <old_text>, <new_text>, <instance_num>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

text The text in which you want to substitute characters, or a
reference to a column containing text.

old_text The existing text that you want to replace.

new_text The text you want to replace old_textold_text with.

instance_num (optional) The occurrence of old_textold_text you want to replace. If
omitted, every instance of old_textold_text is replaced

 Return value

 Remarks

 Example: Substitution within a String

= SUBSTITUTE([Product Code], "NW", "PA")

 See also

Replaces existing text with new text in a text string.

A string of text.

Use the SUBSTITUTE function when you want to replace specific text in a text string; use the REPLACE

function when you want to replace any text of variable length that occurs in a specific location in a text

string.

The SUBSTITUTE function is case-sensitive. If case does not match between texttext and old_textold_text,

SUBSTITUTE will not replace the text.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following formula creates a copy of the column [Product Code] that substitutes the new product code NWNW

for the old product code PAPA wherever it occurs in the column.

Text functions

REPLACE

TRIM
 10/26/2021 • 2 minutes to read

 Syntax

TRIM(<text>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

texttext The text from which you want spaces removed, or a column
that contains text.

 Return value

 Remarks

 Example

= TRIM("A column with trailing spaces. ")

= LEN([Calculated Column 1])

 See also

Removes all spaces from text except for single spaces between words.

The string with spaces removed.

Use TRIM on text that you have received from another application that may have irregular spacing.

The TRIM function was originally designed to trim the 7-bit ASCII space character (value 32) from text. In

the Unicode character set, there is an additional space character called the nonbreaking space character

that has a decimal value of 160. This character is commonly used in Web pages as the HTML entity,

 . By itself, the TRIM function does not remove this nonbreaking space character. For an example of

how to trim both space characters from text, see Remove spaces and nonprinting characters from text.

The following formula creates a new string that does not have trailing white space.

When you create the formula, the formula is propagated through the row just as you typed it, so that you see

the original string in each formula and the results are not apparent. However, when the formula is evaluated the

string is trimmed.

You can verify that the formula produces the correct result by checking the length of the calculated column

created by the previous formula, as follows:

Text functions

UNICHAR
 10/26/2021 • 2 minutes to read

 Syntax

UNICHAR(number)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

number The Unicode number that represents the character.

 Return value

 Remarks

 Example

= UNICHAR(65)

= UNICHAR(32)

= UNICHAR(9733)

Returns the Unicode character referenced by the numeric value.

A character represented by the Unicode number.

If XML characters are not invalid, UNICHAR returns an error.

If Unicode numbers are partial surrogates and data types are not valid, UNICHAR returns an error.

If numbers are numeric values that fall outside the allowable range, UNICHAR returns an error.

If number is zero (0), UNICHAR returns an error.

The Unicode character returned can be a string of characters, for example in UTF-8 or UTF-16 codes.

The following example returns the character represented by the Unicode number 66 (uppercase A).

The following example returns the character represented by the Unicode number 32 (space character).

The following example returns the character represented by the Unicode number 9733 (★ character).

UNICODE
 10/26/2021 • 2 minutes to read

 Syntax

UNICODE(<Text>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

Text Text is the character for which you want the Unicode value.

 Return value

Returns the number (code point) corresponding to the first character of the text.

A numeric code for the first character in a text string.

UPPER
 10/26/2021 • 2 minutes to read

 Syntax

UPPER (<text>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

text The text you want converted to uppercase, or a reference to
a column that contains text.

 Return value

 Example

= UPPER(['New Products'[Product Code])

 See also

Converts a text string to all uppercase letters.

Same text, in uppercase.

The following formula converts the string in the column, [ProductCode], to all uppercase. Non-alphabetic

characters are not affected.

Text functions

LOWER function

VALUE
 10/26/2021 • 2 minutes to read

 Syntax

VALUE(<text>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

text The text to be converted.

 Return value

 Remarks

 Example

= VALUE("3")

 See also

Converts a text string that represents a number to a number.

The converted number in decimal data type.

The value passed as the texttext parameter can be in any of the constant, number, date, or time formats

recognized by the application or services you are using. If texttext is not in one of these formats, an error is

returned.

You do not generally need to use the VALUE function in a formula because the engine implicitly converts

text to numbers as necessary.

You can also use column references. For example, if you have a column that contains mixed number

types, VALUE can be used to convert all values to a single numeric data type. However, if you use the

VALUE function with a column that contains mixed numbers and text, the entire column is flagged with an

error, because not all values in all rows can be converted to numbers.

The following formula converts the typed string, "3", into the numeric value 3.

Text functions

Time intelligence functions
 10/26/2021 • 3 minutes to read

 In this category

F UN C T IO NF UN C T IO N DESC RIP T IO NDESC RIP T IO N

CLOSINGBALANCEMONTH Evaluates the expression at the last date of the month in the
current context.

CLOSINGBALANCEQUARTER Evaluates the expression at the last date of the quarter in
the current context.

CLOSINGBALANCEYEAR Evaluates the expression at the last date of the year in the
current context.

DATEADD Returns a table that contains a column of dates, shifted
either forward or backward in time by the specified number
of intervals from the dates in the current context.

DATESBETWEEN Returns a table that contains a column of dates that begins
with a specified start date and continues until a specified end
date.

DATESINPERIOD Returns a table that contains a column of dates that begins
with a specified start date and continues for the specified
number and type of date intervals.

DATESMTD Returns a table that contains a column of the dates for the
month to date, in the current context.

DATESQTD Returns a table that contains a column of the dates for the
quarter to date, in the current context.

DATESYTD Returns a table that contains a column of the dates for the
year to date, in the current context.

ENDOFMONTH Returns the last date of the month in the current context for
the specified column of dates.

ENDOFQUARTER Returns the last date of the quarter in the current context
for the specified column of dates.

ENDOFYEAR Returns the last date of the year in the current context for
the specified column of dates.

Data Analysis Expressions (DAX) includes time-intelligence functions that enable you to manipulate data using

time periods, including days, months, quarters, and years, and then build and compare calculations over those

periods.

FIRSTDATE Returns the first date in the current context for the specified
column of dates.

FIRSTNONBLANK Returns the first value in the column, column, filtered by the
current context, where the expression is not blank

LASTDATE Returns the last date in the current context for the specified
column of dates.

LASTNONBLANK Returns the last value in the column, column, filtered by the
current context, where the expression is not blank.

NEXTDAY Returns a table that contains a column of all dates from the
next day, based on the first date specified in the dates
column in the current context.

NEXTMONTH Returns a table that contains a column of all dates from the
next month, based on the first date in the dates column in
the current context.

NEXTQUARTER Returns a table that contains a column of all dates in the
next quarter, based on the first date specified in the dates
column, in the current context.

NEXTYEAR Returns a table that contains a column of all dates in the
next year, based on the first date in the dates column, in the
current context.

OPENINGBALANCEMONTH Evaluates the expression at the first date of the month in the
current context.

OPENINGBALANCEQUARTER Evaluates the expression at the first date of the quarter, in
the current context.

OPENINGBALANCEYEAR Evaluates the expression at the first date of the year in the
current context.

PARALLELPERIOD Returns a table that contains a column of dates that
represents a period parallel to the dates in the specified
dates column, in the current context, with the dates shifted a
number of intervals either forward in time or back in time.

PREVIOUSDAY Returns a table that contains a column of all dates
representing the day that is previous to the first date in the
dates column, in the current context.

PREVIOUSMONTH Returns a table that contains a column of all dates from the
previous month, based on the first date in the dates column,
in the current context.

PREVIOUSQUARTER Returns a table that contains a column of all dates from the
previous quarter, based on the first date in the dates
column, in the current context.

F UN C T IO NF UN C T IO N DESC RIP T IO NDESC RIP T IO N

PREVIOUSYEAR Returns a table that contains a column of all dates from the
previous year, given the last date in the dates column, in the
current context.

SAMEPERIODLASTYEAR Returns a table that contains a column of dates shifted one
year back in time from the dates in the specified dates
column, in the current context.

STARTOFMONTH Returns the first date of the month in the current context for
the specified column of dates.

STARTOFQUARTER Returns the first date of the quarter in the current context
for the specified column of dates.

STARTOFYEAR Returns the first date of the year in the current context for
the specified column of dates.

TOTALMTD Evaluates the value of the expression for the month to date,
in the current context.

TOTALQTD Evaluates the value of the expression for the dates in the
quarter to date, in the current context.

TOTALYTD Evaluates the year-to-date value of the expression in the
current context.

F UN C T IO NF UN C T IO N DESC RIP T IO NDESC RIP T IO N

CLOSINGBALANCEMONTH
 10/26/2021 • 2 minutes to read

 Syntax

CLOSINGBALANCEMONTH(<expression>,<dates>[,<filter>])

 ParametersParameters

PA RA M ET ERPA RA M ET ER DEF IN IT IO NDEF IN IT IO N

expression An expression that returns a scalar value.

dates A column that contains dates.

filter (optional) An expression that specifies a filter to apply to the
current context.

 Return value

 Remarks

 Example

Evaluates the expressionexpression at the last date of the month in the current context.

A scalar value that represents the expressionexpression evaluated at the last date of the month in the current context.

The datesdates argument can be any of the following:

NOTENOTE

NOTENOTE

A reference to a date/time column.

A table expression that returns a single column of date/time values.

A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in CALCULATE function.

The filterfilter expression has restrictions described in CALCULATE function.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following sample formula creates a measure that calculates the 'Month End Inventory Value' of the product

inventory.

=
CLOSINGBALANCEMONTH(SUMX(ProductInventory,ProductInventory[UnitCost]*ProductInventory[UnitsBalance]),DateTim
e[DateKey])

 See also
Time intelligence functions

CLOSINGBALANCEYEAR function

CLOSINGBALANCEQUARTER function

CLOSINGBALANCEQUARTER
 10/26/2021 • 2 minutes to read

 Syntax

CLOSINGBALANCEQUARTER(<expression>,<dates>[,<filter>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

expression An expression that returns a scalar value.

dates A column that contains dates.

filter (optional) An expression that specifies a filter to apply to the
current context.

 Return value

 Remarks

 Example

Evaluates the expressionexpression at the last date of the quarter in the current context.

A scalar value that represents the expressionexpression evaluated at the last date of the quarter in the current context.

The datesdates argument can be any of the following:

NOTENOTE

NOTENOTE

A reference to a date/time column.

A table expression that returns a single column of date/time values.

A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in CALCULATE function.

The filterfilter expression has restrictions described in CALCULATE function.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following sample formula creates a measure that calculates the 'Quarter End Inventory Value' of the product

inventory.

=
CLOSINGBALANCEQUARTER(SUMX(ProductInventory,ProductInventory[UnitCost]*ProductInventory[UnitsBalance]),DateT
ime[DateKey])

 See also
Time intelligence functions

CLOSINGBALANCEYEAR function

CLOSINGBALANCEMONTH function

CLOSINGBALANCEYEAR
 10/26/2021 • 2 minutes to read

 Syntax

CLOSINGBALANCEYEAR(<expression>,<dates>[,<filter>][,<year_end_date>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

expression An expression that returns a scalar value.

dates A column that contains dates.

filter (optional) An expression that specifies a filter to apply to the
current context.

year_end_date (optional) A literal string with a date that defines the year-
end date. The default is December 31.

 Return value

 Remarks

Evaluates the expressionexpression at the last date of the year in the current context.

A scalar value that represents the expressionexpression evaluated at the last date of the year in the current context.

The year_end_dateyear_end_date parameter is a string literal of a date, in the same locale as the locale of the client

where the workbook was created. The year portion of the date is ignored.

The datesdates argument can be any of the following:

NOTENOTE

NOTENOTE

A reference to a date/time column.

A table expression that returns a single column of date/time values.

A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in CALCULATE function.

The filterfilter expression has restrictions described in CALCULATE function.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

 Example

=
CLOSINGBALANCEYEAR(SUMX(ProductInventory,ProductInventory[UnitCost]*ProductInventory[UnitsBalance]),DateTime
[DateKey])

 See also

The following sample formula creates a measure that calculates the 'Year End Inventory Value' of the product

inventory.

Time intelligence functions

CLOSINGBALANCEYEAR function

CLOSINGBALANCEQUARTER function

CLOSINGBALANCEMONTH function

DATEADD
 10/26/2021 • 2 minutes to read

 Syntax

DATEADD(<dates>,<number_of_intervals>,<interval>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

dates A column that contains dates.

number_of_intervals An integer that specifies the number of intervals to add to
or subtract from the dates.

interval The interval by which to shift the dates. The value for
interval can be one of the following: year , quarter ,

month , day

 Return value

 Remarks

Returns a table that contains a column of dates, shifted either forward or backward in time by the specified

number of intervals from the dates in the current context.

A table containing a single column of date values.

The datesdates argument can be any of the following:

NOTENOTE

A reference to a date/time column,

A table expression that returns a single column of date/time values,

A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE function.

If the number specified for number_of_inter valsnumber_of_inter vals is positive, the dates in datesdates are moved forward in

time; if the number is negative, the dates in datesdates are shifted back in time.

The inter valinter val parameter is an enumeration, not a set of strings; therefore values should not be enclosed

in quotation marks. Also, the values: year , quarter , month , day should be spelled in full when using

them.

The result table includes only dates that exist in the datesdates column.

If the dates in the current context do not form a contiguous interval, the function returns an error.

 Example - Shifting a set of dates

= DATEADD(DateTime[DateKey],-1,year)

 See also

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following formula calculates dates that are one year before the dates in the current context.

Time intelligence functions

Date and time functions

DATESBETWEEN
 10/26/2021 • 2 minutes to read

NOTENOTE

 Syntax

DATESBETWEEN(<dates>, <start_date>, <end_date>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

dates A date column.

start_date A date expression.

end_date A date expression.

 Return value

 Remarks

Returns a table that contains a column of dates that begins with a specified start date and continues until a

specified end date.

This function is suited to pass as a filter to the CALCULATE function. Use it to filter an expression by a custom

date range.

If you're working with standard date intervals such as days, months, quarters, or years, it's recommended you use the

better suited DATESINPERIOD function.

A table containing a single column of date values.

In the most common use case, datesdates is a reference to the date column of a marked date table.

If star t_datestar t_date is BLANK, then star t_datestar t_date will be the earliest value in the datesdates column.

If end_dateend_date is BLANK, then end_dateend_date will be the latest value in the datesdates column.

Dates used as the star t_datestar t_date and end_dateend_date are inclusive. So, for example, if the star t_datestar t_date value is July

1, 2019, then that date will be included in the returned table (providing the date exists in the datesdates

column).

The returned table can only contain dates stored in the datesdates column. So, for example, if the datesdates

column starts from July 1, 2017, and the star t_datestar t_date value is July 1, 2016, the returned table will start

from July 1, 2017.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

 Example

Customers LTD =
CALCULATE(
 DISTINCTCOUNT(Sales[CustomerKey]),
 DATESBETWEEN(
 'Date'[Date],
 BLANK(),
 MAX('Date'[Date])
)
)

 See also

The following SalesSales table measure definition uses the DATESBETWEEN function to produce a life-to-date (LTD)

calculation. Life-to-date represents the accumulation of a measure over time since the very beginning of time.

Notice that the formula uses the MAX function. This function returns the latest date that's in the filter context. So,

the DATESBETWEEN function returns a table of dates beginning from the earliest date until the latest date being

reported.

Examples in this article can be added to the Power BI Desktop sample model. To get the model, see DAX sample

model.

Consider that the earliest date stored in the DateDate table is July 1, 2017. So, when a report filters the measure by

the month of June 2020, the DATESBETWEEN function returns a date range from July 1, 2017 until June 30,

2020.

Time intelligence functions (DAX)

Date and time functions (DAX)

DATESINPERIOD function (DAX)

https://aka.ms/dax-docs-samples

DATESINPERIOD
 10/26/2021 • 2 minutes to read

 Syntax

DATESINPERIOD(<dates>, <start_date>, <number_of_intervals>, <interval>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

dates A date column.

start_date A date expression.

number_of_intervals An integer that specifies the number of intervals to add to,
or subtract from, the dates.

interval The interval by which to shift the dates. The value for
interval can be one of the following: DAY , MONTH ,

QUARTER , and YEAR

 Return value

 Remarks

 Example

Returns a table that contains a column of dates that begins with a specified start date and continues for the

specified number and type of date intervals.

This function is suited to pass as a filter to the CALCULATE function. Use it to filter an expression by standard

date intervals such as days, months, quarters, or years.

A table containing a single column of date values.

In the most common use case, datesdates is a reference to the date column of a marked date table.

If the number specified for number_of_inter valsnumber_of_inter vals is positive, dates are moved forward in time; if the

number is negative, dates are shifted backward in time.

The inter valinter val parameter is an enumeration. Valid values are DAY , MONTH , QUARTER , and YEAR . Because

it's an enumeration, values aren't passed in as strings. So don't enclose them within quotation marks.

The returned table can only contain dates stored in the datesdates column. So, for example, if the datesdates

column starts from July 1, 2017, and the star t_datestar t_date value is July 1, 2016, the returned table will start

from July 1, 2017.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

Revenue PY =
CALCULATE(
 SUM(Sales[Sales Amount]),
 DATESINPERIOD(
 'Date'[Date],
 MAX('Date'[Date]),
 -1,
 YEAR
)
)

 See also

The following SalesSales table measure definition uses the DATESINPERIOD function to calculate revenue for the

prior year (PY).

Notice the formula uses the MAX function. This function returns the latest date that's in the filter context. So, the

DATESINPERIOD function returns a table of dates beginning from the latest date for the last year.

Examples in this article can be added to the Power BI Desktop sample model. To get the model, see DAX sample

model.

Consider that the report is filtered by the month of June 2020. The MAX function returns June 30, 2020. The

DATESINPERIOD function then returns a date range from July 1, 2019 until June 30, 2020. It's a year of date

values starting from June 30, 2020 for the last year.

Time intelligence functions (DAX)

Date and time functions (DAX)

DATESBETWEEN function (DAX)

https://aka.ms/dax-docs-samples

DATESMTD
 10/26/2021 • 2 minutes to read

 Syntax

DATESMTD(<dates>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

dates A column that contains dates.

 Return value

 Remarks

 Example

= CALCULATE(SUM(InternetSales_USD[SalesAmount_USD]), DATESMTD(DateTime[DateKey]))

 See also

Returns a table that contains a column of the dates for the month to date, in the current context.

A table containing a single column of date values.

The datesdates argument can be any of the following:

NOTENOTE

A reference to a date/time column.

A table expression that returns a single column of date/time values.

A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE function.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following sample formula creates a measure that calculates the 'Month To Date Total' for Internet Sales.

Time intelligence functions

Date and time functions

DATESYTD function

DATESQTD function

DATESQTD
 10/26/2021 • 2 minutes to read

 Syntax

DATESQTD(<dates>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

dates A column that contains dates.

 Return value

 Remarks

 Example

= CALCULATE(SUM(InternetSales_USD[SalesAmount_USD]), DATESQTD(DateTime[DateKey]))

 See also

Returns a table that contains a column of the dates for the quarter to date, in the current context.

A table containing a single column of date values.

The datesdates argument can be any of the following:

NOTENOTE

A reference to a date/time column.

A table expression that returns a single column of date/time values.

A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE function.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following sample formula creates a measure that calculates the 'Quarterly Running Total' of Internet Sales.

Time intelligence functions

Date and time functions

DATESYTD function

DATESMTD function

DATESYTD
 10/26/2021 • 2 minutes to read

 Syntax

DATESYTD(<dates> [,<year_end_date>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

dates A column that contains dates.

year_end_date (optional) A literal string with a date that defines the year-
end date. The default is December 31.

 Return value

 Remarks

 Example

= CALCULATE(SUM(InternetSales_USD[SalesAmount_USD]), DATESYTD(DateTime[DateKey]))

 See also

Returns a table that contains a column of the dates for the year to date, in the current context.

A table containing a single column of date values.

The datesdates argument can be any of the following:

NOTENOTE

A reference to a date/time column,

A table expression that returns a single column of date/time values,

A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE function.

The year_end_dateyear_end_date parameter is a string literal of a date, in the same locale as the locale of the client

where the workbook was created. The year portion of the date is ignored.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following sample formula creates a measure that calculates the 'Running Total' for Internet sales.

Time intelligence functions

Date and time functions

DATESMTD function

DATESQTD function

ENDOFMONTH
 10/26/2021 • 2 minutes to read

 Syntax

ENDOFMONTH(<dates>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

dates A column that contains dates.

 Return value

 Remarks

 Example

= ENDOFMONTH(DateTime[DateKey])

 See also

Returns the last date of the month in the current context for the specified column of dates.

A table containing a single column and single row with a date value.

The datesdates argument can be any of the following:

A reference to a date/time column.

A table expression that returns a single column of date/time values.

A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE function.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following sample formula creates a measure that returns the end of the month, for the current context.

Date and time functions

Time intelligence functions

ENDOFYEAR function

ENDOFQUARTER function

ENDOFQUARTER
 10/26/2021 • 2 minutes to read

 Syntax

ENDOFQUARTER(<dates>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

dates A column that contains dates.

 Return value

 Remarks

 Example

= ENDOFQUARTER(DateTime[DateKey])

 See also

Returns the last date of the quarter in the current context for the specified column of dates.

A table containing a single column and single row with a date value.

The datesdates argument can be any of the following:

A reference to a date/time column,

A table expression that returns a single column of date/time values,

A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE function.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following sample formula creates a measure that returns the end of the quarter, for the current context.

Date and time functions

Time intelligence functions

ENDOFYEAR function

ENDOFMONTH function

ENDOFYEAR
 10/26/2021 • 2 minutes to read

 Syntax

ENDOFYEAR(<dates> [,<year_end_date>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

dates A column that contains dates.

year_end_date (optional) A literal string with a date that defines the year-
end date. The default is December 31.

 Return value

 Remarks

 Example

= ENDOFYEAR(DateTime[DateKey],"06/30/2004")

 See also

Returns the last date of the year in the current context for the specified column of dates.

A table containing a single column and single row with a date value.

The datesdates argument can be any of the following:

A reference to a date/time column,

A table expression that returns a single column of date/time values,

A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE function.

The year_end_dateyear_end_date parameter is a string literal of a date, in the same locale as the locale of the client

where the workbook was created. The year portion of the date is ignored.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following sample formula creates a measure that returns the end of the fiscal year that ends on June 30, for

the current context.

Date and time functions

Time intelligence functions

ENDOFMONTH function

ENDOFQUARTER function

FIRSTDATE
 10/26/2021 • 2 minutes to read

 Syntax

FIRSTDATE(<dates>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

dates A column that contains dates.

 Return value

 Remarks

 Example

= FIRSTDATE('InternetSales_USD'[SaleDateKey])

 See also

Returns the first date in the current context for the specified column of dates.

A table containing a single column and single row with a date value.

The datesdates argument can be any of the following:

A reference to a date/time column.

A table expression that returns a single column of date/time values.

A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE function.

When the current context is a single date, the date returned by the FIRSTDATE and LASTDATE functions

will be equal.

The Return value is a table that contains a single column and single value. Therefore, this function can be

used as an argument to any function that requires a table in its arguments. Also, the returned value can

be used whenever a date value is required.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following sample formula creates a measure that obtains the first date when a sale was made in the Internet

sales channel for the current context.

Date and time functions

Time intelligence functions

LASTDATE function

FIRSTNONBLANK function

FIRSTNONBLANK
 10/26/2021 • 2 minutes to read

 Syntax

FIRSTNONBLANK(<column>,<expression>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

column A column expression.

expression An expression evaluated for blanks for each value of
columncolumn.

 Return value

 Remarks

 See also

Returns the first value in the column, columncolumn, filtered by the current context, where the expression is not blank.

A table containing a single column and single row with the computed first value.

The columncolumn argument can be any of the following:

A reference to any column.

A table with a single column.

A Boolean expression that defines a single-column table .

Constraints on Boolean expressions are described in the topic, CALCULATE function.

This function is typically used to return the first value of a column for which the expression is not blank.

For example, you could get the last value for which there were sales of a product.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

LASTNONBLANK function

Statistical functions

FIRSTNONBLANKVALUE
 10/26/2021 • 2 minutes to read

 Syntax

FIRSTNONBLANKVALUE(<column>, <expression>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

column A column or an expression that returns a single-column
table.

expression An expression evaluated for each value of <column>.

 Return value

 Remarks

 Example

EVALUATE
SUMMARIZECOLUMNS(
 DimProduct[Class],
 "FNBV",
 FIRSTNONBLANKVALUE(
 DimDate[Date],
 SUM(FactInternetSales[SalesAmount])
)
)

Evaluates an expression filtered by the sorted values of a column and returns the first value of the expression

that is not blank.

The first non-blank value of <expression> corresponding to the sorted values of <column>.

The column argument can be any of the following:

A reference to any column.

A table with a single column.

This function is different from FIRSTNONBLANK in that the <column> is added to the filter context for

the evaluation of <expression>.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query,

Returns,

DIM P RO DUC T [C L A SS]DIM P RO DUC T [C L A SS] [F N B V][F N B V]

L 699.0982

H 13778.24

M 1000.4375

533.83

LASTDATE
 10/26/2021 • 2 minutes to read

 Syntax

LASTDATE(<dates>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

dates A column that contains dates.

 Return value

 Remarks

 Example

= LASTDATE('InternetSales_USD'[SaleDateKey])

 See also

Returns the last date in the current context for the specified column of dates.

A table containing a single column and single row with a date value.

The datesdates argument can be any of the following:

A reference to a date/time column,

A table expression that returns a single column of date/time values,

A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE function.

When the current context is a single date, the date returned by the FIRSTDATE and LASTDATE functions

will be equal.

Technically, the Return value is a table that contains a single column and single value. Therefore, this

function can be used as an argument to any function that requires a table in its arguments. Also, the

returned value can be used whenever a date value is required.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following sample formula creates a measure that obtains the last date, for the current context, when a sale

was made in the Internet sales channel.

Date and time functions

Time intelligence functions

FIRSTDATE function

LASTNONBLANK function

LASTNONBLANK
 10/26/2021 • 2 minutes to read

 Syntax

LASTNONBLANK(<column>,<expression>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

column A column expression.

expression An expression evaluated for blanks for each value of
columncolumn.

 Return value

 Remarks

 See also

Returns the last value in the column, columncolumn, filtered by the current context, where the expression is not blank.

A table containing a single column and single row with the computed last value.

The columncolumn argument can be any of the following:

A reference to any column.

A table with a single column.

A Boolean expression that defines a single-column table

Constraints on Boolean expressions are described in the topic, CALCULATE function.

This function is typically used to return the last value of a column for which the expression is not blank.

For example, you could get the last value for which there were sales of a product.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

FIRSTNONBLANK function

Statistical functions

LASTNONBLANKVALUE
 10/26/2021 • 2 minutes to read

 Syntax

LASTNONBLANKVALUE(<column>, <expression>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

column A column or an expression that returns a single-column
table.

expression An expression evaluated for each value of <column>.

 Return value

 Remarks

 Example

EVALUATE
SUMMARIZECOLUMNS(
 DimProduct[Class],
 "LNBV",
 LASTNONBLANKVALUE(
 DimDate[Date],
 SUM(FactInternetSales[SalesAmount])
)
)

Evaluates an expression filtered by the sorted values of a column and returns the last value of the expression

that is not blank.

The last non-blank value of <expression> corresponding to the sorted values of <column>.

The column argument can be any of the following:

A reference to any column.

A table with a single column.

This function is different from LASTNONBLANK in that the <column> is added to the filter context for the

evaluation of <expression>.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following DAX query,

Returns,

DIM P RO DUC T [C L A SS]DIM P RO DUC T [C L A SS] [L N B V][L N B V]

L 132.44

H 137.6

M 84.97

2288.6

NEXTDAY
 10/26/2021 • 2 minutes to read

 Syntax

NEXTDAY(<dates>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

dates A column containing dates.

 Return value

 Remarks

 Example

= CALCULATE(SUM(InternetSales_USD[SalesAmount_USD]), NEXTDAY('DateTime'[DateKey]))

 See also

Returns a table that contains a column of all dates from the next day, based on the first date specified in the

datesdates column in the current context.

A table containing a single column of date values.

This function returns all dates from the next day to the first date in the input parameter. For example, if

the first date in the datesdates argument refers to June 10, 2009; then this function returns all dates equal to

June 11, 2009.

The datesdates argument can be any of the following:

A reference to a date/time column.

A table expression that returns a single column of date/time values.

A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE function.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following sample formula creates a measure that calculates the 'next day sales' of Internet sales.

Time intelligence functions

Date and time functions

NEXTQUARTER function

NEXTMONTH function

NEXTYEAR function

NEXTMONTH
 10/26/2021 • 2 minutes to read

 Syntax

NEXTMONTH(<dates>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

dates A column containing dates.

 Return value

 Remarks

 Example

= CALCULATE(SUM(InternetSales_USD[SalesAmount_USD]), NEXTMONTH('DateTime'[DateKey]))

 See also

Returns a table that contains a column of all dates from the next month, based on the first date in the datesdates

column in the current context.

A table containing a single column of date values.

This function returns all dates from the next day to the first date in the input parameter. For example, if

the first date in the datesdates argument refers to June 10, 2009; then this function returns all dates for the

month of July, 2009.

The datesdates argument can be any of the following:

A reference to a date/time column.

A table expression that returns a single column of date/time values.

A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE function.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following sample formula creates a measure that calculates the 'next month sales' for Internet sales.

Time intelligence functions

Date and time functions

NEXTDAY function

NEXTQUARTER function

NEXTYEAR function

NEXTQUARTER
 10/26/2021 • 2 minutes to read

 Syntax

NEXTQUARTER(<dates>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

dates A column containing dates.

 Return value

 Remarks

 Example

= CALCULATE(SUM(InternetSales_USD[SalesAmount_USD]), NEXTQUARTER('DateTime'[DateKey]))

 See also

Returns a table that contains a column of all dates in the next quarter, based on the first date specified in the

datesdates column, in the current context.

A table containing a single column of date values.

This function returns all dates in the next quarter, based on the first date in the input parameter. For

example, if the first date in the datesdates column refers to June 10, 2009, this function returns all dates for

the quarter July to September, 2009.

The datesdates argument can be any of the following:

A reference to a date/time column.

A table expression that returns a single column of date/time values.

A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE function.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following sample formula creates a measure that calculates the 'next quarter sales' for Internet sales.

Time intelligence functions

Date and time functions

NEXTDAY function

NEXTMONTH function

NEXTYEAR function

NEXTYEAR
 10/26/2021 • 2 minutes to read

 Syntax

NEXTYEAR(<dates>[,<year_end_date>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

dates A column containing dates.

year_end_date (optional) A literal string with a date that defines the year-
end date. The default is December 31.

 Return value

 Remarks

 Example

= CALCULATE(SUM(InternetSales_USD[SalesAmount_USD]), NEXTYEAR('DateTime'[DateKey]))

Returns a table that contains a column of all dates in the next year, based on the first date in the datesdates column,

in the current context.

A table containing a single column of date values.

This function returns all dates in the next year, based on the first date in the input column. For example, if

the first date in the datesdates column refers to the year 2007, this function returns all dates for the year

2008.

The datesdates argument can be any of the following:

A reference to a date/time column.

A table expression that returns a single column of date/time values.

A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE function.

The year_end_dateyear_end_date parameter is a string literal of a date, in the same locale as the locale of the client

where the workbook was created. The year portion of the date is ignored.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following sample formula creates a measure that calculates the 'next year sales' for Internet sales.

See also
Time intelligence functions

Date and time functions

NEXTDAY function

NEXTQUARTER function

NEXTMONTH function

OPENINGBALANCEMONTH
 10/26/2021 • 2 minutes to read

 Syntax

OPENINGBALANCEMONTH(<expression>,<dates>[,<filter>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

expression An expression that returns a scalar value.

dates A column that contains dates.

filter (optional) An expression that specifies a filter to apply to the
current context.

 Return value

 Remarks

 Example

=
OPENINGBALANCEMONTH(SUMX(ProductInventory,ProductInventory[UnitCost]*ProductInventory[UnitsBalance]),DateTim
e[DateKey])

 See also

Evaluates the expressionexpression at the first date of the month in the current context.

A scalar value that represents the expressionexpression evaluated at the first date of the month in the current context.

The datesdates argument can be any of the following:

A reference to a date/time column.

A table expression that returns a single column of date/time values.

A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE function.

The filterfilter expression has restrictions described in the topic, CALCULATE function.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following sample formula creates a measure that calculates the 'Month Start Inventory Value' of the product

inventory.

OPENINGBALANCEYEAR function

OPENINGBALANCEQUARTER function

Time intelligence functions

CLOSINGBALANCEMONTH function

OPENINGBALANCEQUARTER
 10/26/2021 • 2 minutes to read

 Syntax

OPENINGBALANCEQUARTER(<expression>,<dates>[,<filter>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

expression An expression that returns a scalar value.

dates A column that contains dates.

filte* (optional) An expression that specifies a filter to apply to the
current context.

 Return value

 Remarks

 Example

=
OPENINGBALANCEQUARTER(SUMX(ProductInventory,ProductInventory[UnitCost]*ProductInventory[UnitsBalance]),DateT
ime[DateKey])

 See also

Evaluates the expressionexpression at the first date of the quarter, in the current context.

A scalar value that represents the expressionexpression evaluated at the first date of the quarter in the current context.

The datesdates argument can be any of the following:

A reference to a date/time column.

A table expression that returns a single column of date/time values.

A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE function.

The filterfilter expression has restrictions described in the topic, CALCULATE function.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following sample formula creates a measure that calculates the 'Quarter Start Inventory Value' of the

product inventory.

OPENINGBALANCEYEAR function

OPENINGBALANCEMONTH function

Time intelligence functions

CLOSINGBALANCEQUARTER function

OPENINGBALANCEYEAR
 10/26/2021 • 2 minutes to read

 Syntax

OPENINGBALANCEYEAR(<expression>,<dates>[,<filter>][,<year_end_date>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

expression An expression that returns a scalar value.

dates A column that contains dates.

filter (optional) An expression that specifies a filter to apply to the
current context.

year_end_date (optional) A literal string with a date that defines the year-
end date. The default is December 31.

 Return value

 Remarks

 Example

Evaluates the expressionexpression at the first date of the year in the current context.

A scalar value that represents the expressionexpression evaluated at the first date of the year in the current context.

The datesdates argument can be any of the following:

A reference to a date/time column.

A table expression that returns a single column of date/time values.

A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE function.

The filterfilter expression has restrictions described in the topic, CALCULATE function.

The year_end_dateyear_end_date parameter is a string literal of a date, in the same locale as the locale of the client

where the workbook was created. The year portion of the date is ignored.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following sample formula creates a measure that calculates the 'Year Start Inventory Value' of the product

inventory.

=
OPENINGBALANCEYEAR(SUMX(ProductInventory,ProductInventory[UnitCost]*ProductInventory[UnitsBalance]),DateTime
[DateKey])

 See also
OPENINGBALANCEQUARTER function

OPENINGBALANCEMONTH function

Time intelligence functions

CLOSINGBALANCEYEAR function

PARALLELPERIOD
 10/26/2021 • 2 minutes to read

 Syntax

PARALLELPERIOD(<dates>,<number_of_intervals>,<interval>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

dates A column that contains dates.

number_of_intervals An integer that specifies the number of intervals to add to
or subtract from the dates.

interval The interval by which to shift the dates. The value for
interval can be one of the following: year , quarter ,

month .

 Return value

 Remarks

Returns a table that contains a column of dates that represents a period parallel to the dates in the specified

datesdates column, in the current context, with the dates shifted a number of intervals either forward in time or back

in time.

A table containing a single column of date values.

This function takes the current set of dates in the column specified by datesdates , shifts the first date and the

last date the specified number of intervals, and then returns all contiguous dates between the two shifted

dates. If the interval is a partial range of month, quarter, or year then any partial months in the result are

also filled out to complete the entire interval.

The datesdates argument can be any of the following:

A reference to a date/time column,

A table expression that returns a single column of date/time values,

A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE function.

If the number specified for number_of_inter valsnumber_of_inter vals is positive, the dates in datesdates are moved forward in

time; if the number is negative, the dates in datesdates are shifted back in time.

The inter valinter val parameter is an enumeration, not a set of strings; therefore values should not be enclosed

in quotation marks. Also, the values: year , quarter , month should be spelled in full when using them.

The result table includes only dates that appear in the values of the underlying table column.

The PARALLELPERIOD function is similar to the DATEADD function except that PARALLELPERIOD always

 Example

= CALCULATE(SUM(InternetSales_USD[SalesAmount_USD]), PARALLELPERIOD(DateTime[DateKey],-1,year))

 See also

returns full periods at the given granularity level instead of the partial periods that DATEADD returns. For

example, if you have a selection of dates that starts at June 10 and finishes at June 21 of the same year,

and you want to shift that selection forward by one month then the PARALLELPERIOD function will return

all dates from the next month (July 1 to July 31); however, if DATEADD is used instead, then the result will

include only dates from July 10 to July 21.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following sample formula creates a measure that calculates the previous year sales for Internet sales.

Time intelligence functions

Date and time functions

DATEADD function

PREVIOUSDAY
 10/26/2021 • 2 minutes to read

 Syntax

PREVIOUSDAY(<dates>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

dates A column containing dates.

 Return value

 Remarks

 Example

= CALCULATE(SUM(InternetSales_USD[SalesAmount_USD]), PREVIOUSDAY('DateTime'[DateKey]))

 See also

Returns a table that contains a column of all dates representing the day that is previous to the first date in the

datesdates column, in the current context.

A table containing a single column of date values.

This function determines the first date in the input parameter, and then returns all dates corresponding to

the day previous to that first date. For example, if the first date in the datesdates argument refers to June 10,

2009; this function returns all dates equal to June 9, 2009.

The datesdates argument can be any of the following:

A reference to a date/time column.

A table expression that returns a single column of date/time values.

A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE function.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following sample formula creates a measure that calculates the 'previous day sales' for Internet sales.

Time intelligence functions

Date and time functions

PREVIOUSMONTH function

PREVIOUSQUARTER function

PREVIOUSYEAR function

PREVIOUSMONTH
 10/26/2021 • 2 minutes to read

 Syntax

PREVIOUSMONTH(<dates>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

Dates A column containing dates.

 Return value

 Remarks

 Example

= CALCULATE(SUM(InternetSales_USD[SalesAmount_USD]), PREVIOUSMONTH('DateTime'[DateKey]))

 See also

Returns a table that contains a column of all dates from the previous month, based on the first date in the datesdates

column, in the current context.

A table containing a single column of date values.

This function returns all dates from the previous month, using the first date in the column used as input.

For example, if the first date in the datesdates argument refers to June 10, 2009, this function returns all dates

for the month of May, 2009.

The datesdates argument can be any of the following:

A reference to a date/time column.

A table expression that returns a single column of date/time values.

A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following sample formula creates a measure that calculates the 'previous month sales' for Internet sales.

Time intelligence functions

Date and time functions

PREVIOUSDAY

PREVIOUSQUARTER

PREVIOUSYEAR

PREVIOUSQUARTER
 10/26/2021 • 2 minutes to read

 Syntax

PREVIOUSQUARTER(<dates>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

dates A column containing dates.

 Return value

 Remarks

 Example

= CALCULATE(SUM(InternetSales_USD[SalesAmount_USD]), PREVIOUSQUARTER('DateTime'[DateKey]))

 See also

Returns a table that contains a column of all dates from the previous quarter, based on the first date in the datesdates

column, in the current context.

A table containing a single column of date values.

This function returns all dates from the previous quarter, using the first date in the input column. For

example, if the first date in the datesdates argument refers to June 10, 2009, this function returns all dates for

the quarter January to March, 2009.

The datesdates argument can be any of the following:

A reference to a date/time column.

A table expression that returns a single column of date/time values.

A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following sample formula creates a measure that calculates the 'previous quarter sales' for Internet sales.

Time intelligence functions

Date and time functions

PREVIOUSMONTH

PREVIOUSDAY

PREVIOUSYEAR

PREVIOUSYEAR
 10/26/2021 • 2 minutes to read

 Syntax

PREVIOUSYEAR(<dates>[,<year_end_date>])

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

dates A column containing dates.

year_end_date (optional) A literal string with a date that defines the year-
end date. The default is December 31.

 Return value

 Remarks

 Example

= CALCULATE(SUM(InternetSales_USD[SalesAmount_USD]), PREVIOUSYEAR('DateTime'[DateKey]))

Returns a table that contains a column of all dates from the previous year, given the last date in the datesdates

column, in the current context.

A table containing a single column of date values.

This function returns all dates from the previous year given the latest date in the input parameter. For

example, if the latest date in the datesdates argument refers to the year 2009, then this function returns all

dates for the year of 2008, up to the specified year_end_dateyear_end_date.

The datesdates argument can be any of the following:

A reference to a date/time column.

A table expression that returns a single column of date/time values.

A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE.

The year_end_dateyear_end_date parameter is a string literal of a date, in the same locale as the locale of the client

where the workbook was created. The year portion of the date is ignored.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following sample formula creates a measure that calculates the previous year sales for Internet sales.

See also
Time intelligence functions

Date and time functions

PREVIOUSMONTH

PREVIOUSDAY

PREVIOUSQUARTER

SAMEPERIODLASTYEAR
 10/26/2021 • 2 minutes to read

 Syntax

SAMEPERIODLASTYEAR(<dates>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

datesdates A column containing dates.

 Return value

 Remarks

 Example

= CALCULATE(SUM(ResellerSales_USD[SalesAmount_USD]), SAMEPERIODLASTYEAR(DateTime[DateKey]))

 See also

Returns a table that contains a column of dates shifted one year back in time from the dates in the specified

datesdates column, in the current context.

A single-column table of date values.

The datesdates argument can be any of the following:

A reference to a date/time column,

A table expression that returns a single column of date/time values,

A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE.

The dates returned are the same as the dates returned by this equivalent formula:

DATEADD(dates, -1, year)

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following sample formula creates a measure that calculates the previous year sales of Reseller sales.

Time intelligence functions

Date and time functions

PREVIOUSYEAR

PARALLELPERIOD

STARTOFMONTH
 10/26/2021 • 2 minutes to read

 Syntax

STARTOFMONTH(<dates>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

dates A column that contains dates.

 Return value

 Remarks

 Example

= STARTOFMONTH(DateTime[DateKey])

 See also

Returns the first date of the month in the current context for the specified column of dates.

A table containing a single column and single row with a date value.

The datesdates argument can be any of the following:

A reference to a date/time column.

A table expression that returns a single column of date/time values.

A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following sample formula creates a measure that returns the start of the month, for the current context.

Date and time functions

Time intelligence functions

STARTOFYEAR

STARTOFQUARTER

STARTOFQUARTER
 10/26/2021 • 2 minutes to read

 Syntax

STARTOFQUARTER(<dates>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

dates A column that contains dates.

 Return value

 Remarks

 Example

= STARTOFQUARTER(DateTime[DateKey])

 See also

Returns the first date of the quarter in the current context for the specified column of dates.

A table containing a single column and single row with a date value.

The datesdates argument can be any of the following:

A reference to a date/time column.

A table expression that returns a single column of date/time values.

A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following sample formula creates a measure that returns the start of the quarter, for the current context.

Date and time functions

Time intelligence functions

STARTOFYEAR

STARTOFMONTH

STARTOFYEAR
 10/26/2021 • 2 minutes to read

 Syntax

STARTOFYEAR(<dates>)

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

dates A column that contains dates.

YearEndDate (Optional) A year end date value.

 Return value

 Remarks

 Example

= STARTOFYEAR(DateTime[DateKey])

 See also

Returns the first date of the year in the current context for the specified column of dates.

A table containing a single column and single row with a date value.

The datesdates argument can be any of the following:

A reference to a date/time column.

A table expression that returns a single column of date/time values.

A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following sample formula creates a measure that returns the start of the year, for the current context.

Date and time functions

Time intelligence functions

STARTOFQUARTER

STARTOFMONTH

TOTALMTD
 10/26/2021 • 2 minutes to read

 Syntax

TOTALMTD(<expression>,<dates>[,<filter>])

 ParametersParameters

PA RA M ET ERPA RA M ET ER DEF IN IT IO NDEF IN IT IO N

expression An expression that returns a scalar value.

dates A column that contains dates.

filter (optional) An expression that specifies a filter to apply to the
current context.

 Return value

 Remarks

 Example

= TOTALMTD(SUM(InternetSales_USD[SalesAmount_USD]),DateTime[DateKey])

 See also

Evaluates the value of the expressionexpression for the month to date, in the current context.

A scalar value that represents the expressionexpression evaluated for the dates in the current month-to-date, given the

dates in datesdates .

The datesdates argument can be any of the following:

A reference to a date/time column.

A table expression that returns a single column of date/time values.

A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE.

The filterfilter expression has restrictions described in the topic, CALCULATE.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following sample formula creates a measure that calculates the 'month running total' or 'month running

sum' for Internet sales.

ALL

CALCULATE

TOTALYTD

TOTALQTD

TOTALQTD
 10/26/2021 • 2 minutes to read

 Syntax

TOTALQTD(<expression>,<dates>[,<filter>])

 ParametersParameters

PA RA M ET ERPA RA M ET ER DEF IN IT IO NDEF IN IT IO N

expression An expression that returns a scalar value.

dates A column that contains dates.

filter (optional) An expression that specifies a filter to apply to the
current context.

 Return value

 Remarks

 Example

= TOTALQTD(SUM(InternetSales_USD[SalesAmount_USD]),DateTime[DateKey])

 See also

Evaluates the value of the expressionexpression for the dates in the quarter to date, in the current context.

A scalar value that represents the expressionexpression evaluated for all dates in the current quarter to date, given the

dates in datesdates .

The datesdates argument can be any of the following:

A reference to a date/time column.

A table expression that returns a single column of date/time values.

A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE.

The filterfilter expression has restrictions described in the topic, CALCULATE.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

level security (RLS) rules.

The following sample formula creates a measure that calculates the 'quarter running total' or 'quarter running

sum' for Internet sales.

ALL

CALCULATE

TOTALYTD

TOTALMTD

TOTALYTD
 10/26/2021 • 2 minutes to read

 Syntax

TOTALYTD(<expression>,<dates>[,<filter>][,<year_end_date>])

 ParametersParameters

PA RA M ET ERPA RA M ET ER DEF IN IT IO NDEF IN IT IO N

expression An expression that returns a scalar value.

dates A column that contains dates.

filter (optional) An expression that specifies a filter to apply to the
current context.

year_end_date (optional) A literal string with a date that defines the year-
end date. The default is December 31.

 Return value

 Remarks

Evaluates the year-to-date value of the expressionexpression in the current context.

A scalar value that represents the expressionexpression evaluated for the current year-to-date datesdates .

= TOTALYTD(SUM(InternetSales_USD[SalesAmount_USD]),DateTime[DateKey], ALL('DateTime'), "6/30")

The datesdates argument can be any of the following:

A reference to a date/time column.

A table expression that returns a single column of date/time values.

A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE.

The filterfilter expression has restrictions described in the topic, CALCULATE.

The year_end_dateyear_end_date parameter is a string literal of a date, in the same locale as the locale of the client

where the workbook was created. The year portion of the date is not required and is ignored. For

example, the following formula specifies a (fiscal) year_end_date of 6/30 in an EN-US locale workbook.

In this example, year_end_date can be specified as "6/30", "Jun 30", "30 June", or any string that resolves

to a month/day. However, it is recommended you specify year_end_date using "month/day" (as shown) to

ensure the string resolves to a date.

This function is not supported for use in DirectQuery mode when used in calculated columns or row-

 Example

= TOTALYTD(SUM(InternetSales_USD[SalesAmount_USD]),DateTime[DateKey])

 See also

level security (RLS) rules.

The following sample formula creates a measure that calculates the 'year running total' or 'year running sum'

for Internet sales.

ALL

CALCULATE

DATESYTD

TOTALMTD

TOTALQTD

Statements
 10/26/2021 • 2 minutes to read

 In this category

STAT EM EN TSTAT EM EN T DESC RIP T IO NDESC RIP T IO N

DEFINE (Keyword) Defines entities that exist only for the duration of
a DAX query.

EVALUATE (Keyword) A statement required to execute a DAX query.

ORDER BY (Keyword) Defines one or more expressions used to sort
results of a DAX query.

VAR (Keyword) Stores the result of an expression as a named
variable, which can then be passed as an argument to other
measure expressions.

DEFINE
 10/26/2021 • 2 minutes to read

 Syntax

DEFINE { <entity> [<name>] = <expression> }

 ArgumentsArguments

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

entity MEASURE, VAR, TABLE, or COLUMN.

name The name of an entity. It cannot be an expression.

expression Any DAX expression that returns a single scalar value. The
expression can use any of the defined entities. The
expression must return a table. If a scalar value is required,
wrap the scalar inside a ROW() function to produce a table.

 Remarks

 See also

A keyword that defines entities that can be applied to one or more EVALUATE statements of a DAX query.

Entities can be variables, measures, tables, and columns.

Definitions typically precede the EVALUATE statement and are valid for all EVALUATE statements.

Definitions can reference other definitions that appear before or after the current definition.

Definitions exist only for the duration of the query.

DAX queries

ORDER BY

VAR

EVALUATE
 10/26/2021 • 2 minutes to read

 Syntax

EVALUATE <table>

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

table A table expression

 Return value

 Remarks

 Example

EVALUATE(
 'Internet Sales'
)

 See also

A statement containing a table expression required in a DAX query.

The result of a table expression.

A query can contain multiple EVALUATE statements.

Returns all rows and columns from the Internet Sales table, as a table.

DAX queries

DEFINE

ORDER BY

ORDER BY
 10/26/2021 • 2 minutes to read

 Syntax

ORDER BY {<expression> [{ASC | DESC}]}

 ArgumentsArguments

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

expression Any DAX expression that returns a single scalar value.

ASC (default) Ascending sort order.

DESC Descending sort order.

 Return value

 Example

EVALUATE(
 'Internet Sales'
)
ORDER BY
 'Internet Sales'[Order Date]

 See also

Defines the sort order of query results returned by an EVALUATE statement in a DAX query.

The result of an EVALUATE statement in ascending (ASC) or descending (DESC) order.

Returns all rows and columns from the Internet Sales table, ordered by Order Date, as a table.

DAX queries

EVALUATE

VAR
 10/26/2021 • 2 minutes to read

 Syntax

VAR <name> = <expression>

 ParametersParameters

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

name The name of the variable (identifier).
Delimiters are not supported. For example, 'varName' or
[varName] will result in an error.
Supported character set: a-z, A-Z, 0-9.
0-9 are not valid as first character.
__ (double underscore) is allowed as a prefix to the identifier
name.
No other special characters are supported.
Reserved keywords not allowed.
Names of existing tables are not allowed.
Empty spaces are not allowed.

expression A DAX expression which returns a scalar or table value.

 Return value

 Remarks

 Example

Stores the result of an expression as a named variable, which can then be passed as an argument to other

measure expressions. Once resultant values have been calculated for a variable expression, those values do not

change, even if the variable is referenced in another expression.

A named variable containing the result of the expression argument.

An expression passed as an argument to VAR can contain another VAR declaration.

When referencing a variable:

Measures cannot refer to variables defined outside the measure expression, but can refer to functional

scope variables defined within the expression.

Variables can refer to measures.

Variables can refer to previously defined variables.

Columns in table variables cannot be referenced via TableName[ColumnName] syntax.

For best practices when using VAR, see Use variables to improve your DAX formulas.

To calculate a percentage of year-over-year growth without using a variable, you could create three separate

measures. This first measure calculates Sum of Sales Amount:

Sum of SalesAmount = SUM(SalesTable[SalesAmount])

SalesAmount PreviousYear =
 CALCULATE([Sum of SalesAmount],
 SAMEPERIODLASTYEAR(Calendar[Date])
)

Sum of SalesAmount YoY%: =
 IF([Sum of SalesAmount] ,
 DIVIDE(([Sum of SalesAmount] – [SalesAmount PreviousYear]), [Sum of SalesAmount])
)

YoY% = VAR Sales = SUM(SalesTable[SalesAmount])

VAR SalesLastYear =
 CALCULATE (SUM (SalesTable[SalesAmount]), SAMEPERIODLASTYEAR ('Calendar'[Date]))

 return if(Sales, DIVIDE(Sales – SalesLastYear, Sales))

A second measure calculates the sales amount for the previous year :

You can then create a third measure that combines the other two measures to calculate a growth percentage.

Notice the Sum of SalesAmount measure is used in two places; first to determine if there is a sale, then again to

calculate a percentage.

By using a variable, you can create a single measure that calculates the same result:

By using a variable, you can get the same outcome, but in a more readable way. In addition, the result of the

expression is stored in the variable upon declaration. It doesn't have to be recalculated each time it is used, as it

would without using a variable. This can improve the measure's performance.

DAX glossary
 10/26/2021 • 6 minutes to read

 Analytic query

 BLANK

 Calculated column

 Calculated measure

 Calculated table

 Calculation

 Context

Power BI visuals query a data model by using an analytic query. An analytic query strives to reduce potentially

large data volumes and model complexities using three distinct phases: Filter, group and summarize. An analytic

query is created automatically when fields are assigned to the wells of report visuals. Report authors can control

the behavior of field assignments by renaming fields, modifying the summarization technique, or disabling

summarization to achieve grouping. At report design time, filters can be added to the report, a report page, or a

visual. In reading view, filters can be modified in the FiltersFilters pane, or by interactions with slicers and other

visuals (cross-filtering).

DAX defines the absence of a value as BLANK. It's the equivalent of SQL NULL, but it doesn't behave exactly the

same. It's more closely aligned to Excel and how it defines an empty cell. BLANK is evaluated as zero or an

empty string when combined with other operations. For example, BLANK + 20 = 20. Always use capital letters;

the plural is BLANKs, with a lowercase "s".

A model calculation used to add a column to a tabular model by writing a DAX formula. The formula must

return a scalar value, and it's evaluated for each row in the table. A calculated column can be added to an Import

or DirectQuery storage mode table.

In tabular modeling, there's no such concept as a calculated measure. Use measure instead. The word calculated

is used to describe calculated tables and calculated columns. It distinguishes them from tables and columns that

originate from Power Query. Power Query doesn't have the concept of a measure.

A model calculation used to add a table to a tabular model by writing a DAX formula. The formula must return a

table object. It results in a table that uses Import storage mode.

A deliberate process that transforms one or more inputs into one or more results. In a tabular data model, a

calculation can be a model object; either a calculated table, calculated column, or measure.

Describes the environment in which a DAX formula is evaluated. There are two types of context: Row context and

filter context. Row context represents the "current row", and is used to evaluate calculated column formulas and

expressions used by table iterators. Filter context is used to evaluate measures, and it represents filters applied

directly to model columns and filters propagated by model relationships.

DAX

 Dynamic security

 Expression

 Field

 Formula

 Function

 Implicit measure

 Iterator function

 MDX

Data Analysis Expressions (DAX) language is a formula language for Power Pivot in Excel, Power BI, Azure

Analysis Services, and tabular modeling in SQL Server Analysis Services. You can also use DAX to add data

model calculations and define row-level security (RLS) rules.

When row-level security (RLS) rules are enforced by using the identity of the report user. Rules filter model

tables by using the user's account name, which can be done with the USERNAME or USERPRINCIPALNAME

functions. See Row-level security.

A unit of DAX logic that's evaluated and returns a result. Expressions can declare variables in which case they're

assigned a sub-expression and must include a RETURN statement that outputs a final expression. Expressions

are constructed by using model objects (tables, columns, or measures), functions, operators, or constants.

Data model resource presented in the FieldsFields pane. Fields are used to configure report filters and visuals. Fields

consist of model columns, hierarchy levels, and measures.

One or more DAX expressions used to define a model calculation. Inner expressions are called sub-expressions.

Plural is formulas.

DAX functions have arguments that allow passing in parameters. Formulas can use many function calls, possibly

nesting functions within other functions. In a formula, function names must be followed by parentheses. Within

the parentheses, parameters are passed in.

An automatically generated calculation achieved by configuring a Power BI visual to summarize column values.

NumericNumeric columns support the greatest range of summarization, including: Sum, Average, Minimum, Maximum,

Count (Distinct), Count, Standard deviation, Variance, or Median. Columns of other data types can be

summarized, too. TextText columns can be summarized by using: First (alphabetically), Last (alphabetically), Count

(Distinct), or Count. DateDate columns can be summarized by using: Earliest, Latest, Count (Distinct), or Count.

BooleanBoolean columns can be summarized by using: Count (Distinct), or Count.

A DAX function that enumerates all rows of a given table and evaluate a given expression for each row. It

provides flexibility and control over how model calculations summarize data.

Multidimensional Expressions (MDX) language is a formula language for SQL Server Analysis Services

multidimensional models (also known as cubes). MDX can be used to query tabular models, however it can't

define implicit measures. It can only query measures that are already defined in the model.

 Measure

 Measure group

 Model calculation

 Quick measures

 Report measures

 Row-level security

 Scalar

 Summarization

 Time intelligence

 Time intelligence function

A calculation that achieves summarization. Measures are either implicit or explicit. An explicit measure is a

calculation added to a tabular data model by writing a DAX formula. A measure formula must return a scalar

value. In the FieldsFields pane, explicit measures are adorned with a calculator icon. Explicit measures are required

when the model is queried by using Multidimensional Expressions (MDX), as is the case when using Analyze in

Excel. An explicit measure is commonly just called a measure.

A model table that contains at least one measure, and has no hierarchies or visible columns. In the FieldsFields pane,

each measure group is adorned with a multi-calculator icon. Measure groups are listed together at the top of the

FieldsFields pane, and sorted alphabetically by name.

A named formula that's used to add a calculated table, calculated column, or measure to a tabular data model.

Its structure is <NAME> = <FORMULA>. Most calculations are added by data modelers in Power BI Desktop,

but measures can also be added to a live connection report. See Report measures.

A feature in Power BI Desktop that eliminates the need to write DAX formulas for commonly defined measures.

Quick measures include average per category, rank, and difference from baseline.

Also called report-level measures. They're added to a live connection report in Power BI Desktop by writing a

DAX formula, but only for connections to Power BI models or Analysis Services tabular models.

Also called RLS. Design technique to restrict access to subsets of data for specific users. In a tabular model, it's

achieved by creating model roles. Roles have rules, which are DAX expressions to filter table rows.

In DAX, a scalar is a single value. A scalar can be of any data type: Decimal, Integer, DateTime, String, Currency,

Boolean. A scalar value can be the result of an expression calculated from multiple values. For example, an

aggregation function such as MAX() returns a single maximum value from a set of values from which to

evaluate.

An operation applied to the values of a column. See measure.

Time intelligence relates to calculations over time, like year-to-date (YTD).

DAX includes many time intelligence functions. Each time intelligence function achieves its result by modifying

the filter context for date filters. Example functions: TOTALYTD and SAMEPERIODLASTYEAR.

 Value, values

 What-if parameter

Data to be visualized.

A Power BI Desktop feature that provides the ability to accept user input through slicers. Each parameter creates

a single-column calculated table and a measure that returns a single-selected value. The measure can be used in

model calculations to respond to the user's input.

DAX operators
 10/26/2021 • 6 minutes to read

 Types of operators

 Arithmetic operatorsArithmetic operators

A RIT H M ET IC O P ERATO RA RIT H M ET IC O P ERATO R M EA N IN GM EA N IN G EXA M P L EEXA M P L E

+ (plus sign) Addition 3+3

– (minus sign) Subtraction or sign 3–1–1

* (asterisk) Multiplication 3*3

/ (forward slash) Division 3/3

^ (caret) Exponentiation 16^4

NOTENOTE

 Comparison operatorsComparison operators

C O M PA RISO N O P ERATO RC O M PA RISO N O P ERATO R M EA N IN GM EA N IN G EXA M P L EEXA M P L E

= Equal to [Region] = "USA"

== Strict equal to [Region] == "USA"

> Greater than [Sales Date] > "Jan 2009"

< Less than [Sales Date] < "Jan 1 2009"

>= Greater than or equal to [Amount] >= 20000

The Data Analysis Expression (DAX) language uses operators to create expressions that compare values, perform

arithmetic calculations, or work with strings.

There are four different types of calculation operators: arithmetic, comparison, text concatenation, and logical.

To perform basic mathematical operations such as addition, subtraction, or multiplication; combine numbers;

and produce numeric results, use the following arithmetic operators.

The plus sign can function both as a binary operator and as a unary operator. A binary operator requires numbers on

both sides of the operator and performs addition. When you use values in a DAX formula on both sides of the binary

operator, DAX tries to cast the values to numeric data types if they are not already numbers. In contrast, the unary

operator can be applied to any type of argument. The plus symbol does not affect the type or value and is simply ignored,

whereas the minus operator creates a negative value, if applied to a numeric value.

You can compare two values with the following operators. When two values are compared by using these

operators, the result is a logical value, either TRUE or FALSE.

<= Less than or equal to [Amount] <= 100

<> Not equal to [Region] <> "USA"

C O M PA RISO N O P ERATO RC O M PA RISO N O P ERATO R M EA N IN GM EA N IN G EXA M P L EEXA M P L E

 Text concatenation operatorText concatenation operator

T EXT O P ERATO RT EXT O P ERATO R M EA N IN GM EA N IN G EXA M P L EEXA M P L E

& (ampersand) Connects, or concatenates, two values
to produce one continuous text value

[Region] & ", " & [City]

 Logical operatorsLogical operators

T EXT O P ERATO RT EXT O P ERATO R M EA N IN GM EA N IN G EXA M P L ESEXA M P L ES

&& (double ampersand) Creates an AND condition between
two expressions that each have a
Boolean result. If both expressions
return TRUE, the combination of the
expressions also returns TRUE;
otherwise the combination returns
FALSE.

([Region] = "France") && ([BikeBuyer]
= "yes"))

|| (double pipe symbol) Creates an OR condition between two
logical expressions. If either expression
returns TRUE, the result is TRUE; only
when both expressions are FALSE is
the result FALSE.

(([Region] = "France") || ([BikeBuyer] =
"yes"))

IN Creates a logical OR condition between
each row being compared to a table.
Note: the table constructor syntax uses
curly braces.

'Product'[Color] IN { "Red", "Blue",
"Black" }

 Operators and precedence order

 Calculation orderCalculation order

 Operator precedenceOperator precedence

All comparison operators except == treat BLANK as equal to number 0, empty string "", DATE(1899, 12, 30), or

FALSE. As a result, [Column] = 0 will be true when the value of [Column] is either 0 or BLANK. In contrast,

[Column] == 0 is true only when the value of [Column] is 0.

Use the ampersand (&&) to join, or concatenate, two or more text strings to produce a single piece of text.

Use logical operators (&&) and (||) to combine expressions to produce a single result.

In some cases, the order in which calculation is performed can affect the Return value; therefore, it is important

to understand how the order is determined and how you can change the order to obtain the desired results.

An expression evaluates the operators and values in a specific order. All expressions always begin with an equal

sign (=). The equal sign indicates that the succeeding characters constitute an expression.

Following the equal sign are the elements to be calculated (the operands), which are separated by calculation

operators. Expressions are always read from left to right, but the order in which the elements are grouped can

be controlled to some degree by using parentheses.

O P ERATO RO P ERATO R DESC RIP T IO NDESC RIP T IO N

^ Exponentiation

– Sign (as in –1)

* and / Multiplication and division

! NOT (unary operator)

+ and – Addition and subtraction

& Connects two strings of text (concatenation)

=,==,<,>,<=,>=,<> Comparison

 Using parentheses to control calculation orderUsing parentheses to control calculation order

=5+2*3

=(5+2)*3

=(3 + 0.25)/(3 - 0.25)

=-2^2

= (-2)^2

 Compatibility

If you combine several operators in a single formula, the operations are ordered according to the following

table. If the operators have equal precedence value, they are ordered from left to right. For example, if an

expression contains both a multiplication and division operator, they are evaluated in the order that they appear

in the expression, from left to right.

To change the order of evaluation, you should enclose in parentheses that part of the formula that must be

calculated first. For example, the following formula produces 11 because multiplication is calculated before

addition. The formula multiplies 2 by 3, and then adds 5 to the result.

In contrast, if you use parentheses to change the syntax, the order is changed so that 5 and 2 are added together,

and the result multiplied by 3 to produce 21.

In the following example, the parentheses around the first part of the formula force the calculation to evaluate

the expression (3 + 0.25) first and then divide the result by the result of the expression, (3 - 0.25) .

In the following example, the exponentiation operator is applied first, according to the rules of precedence for

operators, and then the sign operator is applied. The result for this expression is -4.

To ensure that the sign operator is applied to the numeric value first, you can use parentheses to control

operators, as shown in the following example. The result for this expression is 4.

 Coercing data types of operandsCoercing data types of operands

L EF T SIDE DATA T Y P EL EF T SIDE DATA T Y P E RIGH T SIDE DATA T Y P ERIGH T SIDE DATA T Y P E

Numeric Numeric

Boolean Boolean

String String

DATA T Y P ES USED IN DA XDATA T Y P ES USED IN DA X DATA T Y P ES USED IN EXC ELDATA T Y P ES USED IN EXC EL

Numbers (I8, R8) Numbers (R8)

String String

Boolean Boolean

DateTime Variant

Currency Currency

 Differences in precedence orderDifferences in precedence order

DAX easily handles and compares various data types, much like Microsoft Excel. However, the underlying

computation engine is based on SQL Server Analysis Services and provides additional advanced features of a

relational data store, including richer support for date and time types. Therefore, in some cases the results of

calculations or the behavior of functions may not be the same as in Excel. Moreover, DAX supports more data

types than does Excel. This section describes the key differences.

In general, the two operands on the left and right sides of any operator should be the same data type. However,

if the data types are different, DAX will convert them to a common data type to apply the operator in some

cases:

1. Both operands are converted to the largest possible common data type.

2. The operator is applied, if possible.

For example, suppose you have two numbers that you want to combine. One number results from a formula,

such as = [Price] * .20 , and the result may contain many decimal places. The other number is an integer that

has been provided as a string value.

In this case, DAX will convert both numbers to real numbers in a numeric format, using the largest numeric

format that can store both kinds of numbers. Then DAX will apply the multiplication.

Depending on the data-type combination, type coercion may not be applied for comparison operations. For a

complete list of data types supported by DAX, see Data types supported in tabular models and Data types in

Power BI Desktop.

Integer, Real Number, Currency, Date/time and Blank are considered numeric for comparison purposes. Blank

evaluates to zero when performing a comparison. The following data-type combinations are supported for

comparison operations.

Other mixed data-type comparisons will return an error. For example, a formula such as ="1" > 0 returns an

error stating that DAX comparison operations do not support comparing values of type Text with values of type

Integer.

The precedence order of operations in DAX formulas is basically the same as that used by Microsoft Excel, but

https://docs.microsoft.com/en-us/tabular-models/data-types-supported-ssas-tabular
https://docs.microsoft.com/en-us/power-bi/connect-data/desktop-data-types

 See also

some Excel operators are not supported, such as percent. Also, ranges are not supported.

Therefore, whenever you copy and paste formulas from Excel, be sure to review the formula carefully, as some

operators or elements in the formulas may not be valid. When there is any doubt about the order in which

operations are performed, it's recommended you use parentheses to control the order of operations and

remove any ambiguity about the result.

DAX syntax

DAX parameter-naming

DAX queries
 10/26/2021 • 4 minutes to read

 Syntax

[DEFINE { MEASURE <tableName>[<name>] = <expression> }
 { VAR <name> = <expression>}]
EVALUATE <table>
[ORDER BY {<expression> [{ASC | DESC}]}[, …]
[START AT {<value>|<parameter>} [, …]]]

 Keywords
 EVALUATE (Required)EVALUATE (Required)

 SyntaxSyntax

EVALUATE <table>

 ArgumentsArguments

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

table A table expression.

 ExampleExample

EVALUATE(
 'Internet Sales'
)

With DAX queries, you can query and return data defined by a table expression. Reporting clients construct DAX

queries whenever a field is placed on a report surface, or a whenever a filter or calculation is applied. DAX

queries can also be created and run in SQL Server Management Studio (SSMS) and open-source tools like DAX

Studio. DAX queries run in SSMS and DAX Studio return results as a table.

Before learning about queries, it's important you have a solid understanding of DAX basics. If you haven't

already, be sure to checkout DAX overview.

At the most basic level, a DAX query is an EVALUATEEVALUATE statement containing a table expression. However, a query

can contain multiple EVALUATE statements.

Returns all rows and columns from the Internet Sales table, as a table.

https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://daxstudio.org

 ORDER BY (Optional)ORDER BY (Optional)

 SyntaxSyntax

EVALUATE <table>
[ORDER BY {<expression> [{ASC | DESC}]}[, …]

 ArgumentsArguments

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

expression Any DAX expression that returns a single scalar value.

ASC (default) Ascending sort order.

DESC Descending sort order.

 ExampleExample

EVALUATE(
 'Internet Sales'
)
ORDER BY
 'Internet Sales'[Order Date]

The optional ORDER BYORDER BY keyword defines one or more expressions used to sort query results. Any expression

that can be evaluated for each row of the result is valid.

Returns all rows and columns from the Internet Sales table, ordered by Order Date, as a table.

 START AT (Optional)START AT (Optional)

 SyntaxSyntax

EVALUATE <table>
[ORDER BY {<expression> [{ASC | DESC}]}[, …]
[START AT {<value>|<parameter>} [, …]]]

 ArgumentsArguments

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

value A constant value. Cannot be an expression.

parameter The name of a parameter in an XMLA statement prefixed
with an @ character.

 ExampleExample

EVALUATE(
 'Internet Sales'
)
ORDER BY
 'Internet Sales'[Sales Order Number]
START AT "SO7000"

The optional START ATSTART AT keyword is used inside an ORDER BYORDER BY clause. It defines the value at which the query

results begin.

START AT arguments have a one-to-one correspondence with the columns in the ORDER BY clause. There can be

as many arguments in the START AT clause as there are in the ORDER BY clause, but not more. The first

argument in the START AT defines the starting value in column 1 of the ORDER BY columns. The second

argument in the START AT defines the starting value in column 2 of the ORDER BY columns within the rows that

meet the first value for column 1.

Returns all rows and columns from the Internet Sales table, ordered by Sales Order Number, beginning at

SO7000.

 DEFINE (Optional)DEFINE (Optional)

 SyntaxSyntax

[DEFINE { MEASURE <tableName>[<name>] = <expression> }
 { VAR <name> = <expression>}]
EVALUATE <table>

 ArgumentsArguments

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

tableName The name of an existing table using standard DAX syntax. It
cannot be an expression.

name The name of a new measure. It cannot be an expression.

expression Any DAX expression that returns a single scalar value. The
expression can use any of the defined measures. The
expression must return a table. If a scalar value is required,
wrap the scalar inside a ROW() function to produce a table.

VAR An optional expression as a named variable. A VAR can be
passed as an argument to other expressions.

 ExampleExample

Multiple EVALUATEEVALUATE/ORDER BYORDER BY/START ATSTART AT clauses can be specified in a single query.

The optional DEFINEDEFINE keyword defines entities that exist only for the duration of the query. Definitions are valid

for all EVALUATE statements. Entities can be variables, measures, tables, and columns. Definitions can reference

other definitions that appear before or after the current definition. Definitions typically precede the EVALUATE

statement.

DEFINE
MEASURE 'Internet Sales'[Internet Total Sales] = SUM('Internet Sales'[Sales Amount])
EVALUATE
SUMMARIZECOLUMNS
(
 'Date'[Calendar Year],
 TREATAS({2013, 2014}, 'Date'[Calendar Year]),
 "Total Sales", [Internet Total Sales],
 "Combined Years Total Sales", CALCULATE([Internet Total Sales], ALLSELECTED('Date'[Calendar Year]))
)
ORDER BY [Calendar Year]

 Parameters in DAX queries

IMPORTANTIMPORTANT

 See also

Returns the calculated total sales for years 2013 and 2014, and combined calculated total sales for years 2013

and 2014, as a table. The measure in the DEFINE statement, Internet Total Sales, is used in both Total Sales and

Combined Years Total Sales expressions.

A well-defined DAX query statement can be parameterized and then used over and over with just changes in the

parameter values.

The Execute Method (XMLA) method has a Parameters Element (XMLA) collection element that allows

parameters to be defined and assigned a value. Within the collection, each Parameter Element (XMLA) element

defines the name of the parameter and a value to it.

Reference XMLA parameters by prefixing the name of the parameter with an @ character. Any place in the

syntax where a value is allowed, the value can be replaced with a parameter call. All XMLA parameters are typed

as text.

Parameters defined in the parameters section and not used in the <STATEMENT><STATEMENT> element generate an error response in

XMLA. Parameters used and not defined in the <Parameters><Parameters> element generate an error response in XMLA.

FILTER

https://docs.microsoft.com/en-us/analysis-services/xmla/xml-elements-methods-execute
https://docs.microsoft.com/en-us/analysis-services/xmla/xml-elements-properties/parameters-element-xmla
https://docs.microsoft.com/en-us/analysis-services/xmla/xml-elements-properties/parameter-element-xmla

SUMMARIZECOLUMNS

TREATAS

VAR

DAX parameter-naming conventions
 10/26/2021 • 2 minutes to read

 Parameter names

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

expression Any DAX expression that returns a single scalar value, where
the expression is to be evaluated multiple times (for each
row/context).

value Any DAX expression that returns a single scalar value where
the expression is to be evaluated exactly once before all
other operations.

table Any DAX expression that returns a table of data.

tableName The name of an existing table using standard DAX syntax. It
cannot be an expression.

columnName The name of an existing column using standard DAX syntax,
usually fully qualified. It cannot be an expression.

name A string constant that will be used to provide the name of a
new object.

order An enumeration used to determine the sort order.

ties An enumeration used to determine the handling of tie
values.

type An enumeration used to determine the data type for
PathItem and PathItemReverse.

 Prefixing parameter names or using the prefix onlyPrefixing parameter names or using the prefix only

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

prefixing Parameter names may be further qualified with a prefix that
is descriptive of how the argument is used and to avoid
ambiguous reading of the parameters. For example:

Result_ColumnName - Refers to an existing column used to
get the result values in the LOOKUPVALUE() function.

Search_ColumnName - Refers to an existing column used to
search for a value in the LOOKUPVALUE() function.

Parameter names are standardized in DAX reference to facilitate the usage and understanding of the functions.

omitting Parameter names will be omitted if the prefix is clear enough
to describe the parameter.

For example, instead of having the following syntax DATE
(Year_Value, Month_Value, Day_Value) it is clearer for the
user to read DATE (Year, Month, Day); repeating three times
the suffix value does not add anything to a better
comprehension of the function and it clutters the reading
unnecessarily.

However, if the prefixed parameter is Year_columnName then
the parameter name and the prefix will stay to make sure
the user understands that the parameter requires a
reference to an existing column of Years.

T ERMT ERM DEF IN IT IO NDEF IN IT IO N

DAX syntax
 10/26/2021 • 9 minutes to read

 Syntax requirements

F O RM UL AF O RM UL A RESULTRESULT

= 3 3

= "SalesSales" SalesSales

= 'Sales'[Amount] If you use this formula within the Sales table, you will get the
value of the column Amount in the Sales table for the
current row.

= (0.03 *[Amount])

=0.03 * [Amount]

Three percent of the value in the Amount column of the
current table.

Although this formula can be used to calculate a percentage,
the result is not shown as a percentage unless you apply
formatting in the table.

= PI() The value of the constant pi.

This article describes syntax and requirements for the DAX formula expression language.

A DAX formula always starts with an equal sign (=). After the equals sign, you can provide any expression that

evaluates to a scalar, or an expression that can be converted to a scalar. These include the following:

A scalar constant, or expression that uses a scalar operator (+,-,*,/,>=,...,&&, ...)

References to columns or tables. The DAX language always uses tables and columns as inputs to

functions, never an array or arbitrary set of values.

Operators, constants, and values provided as part of an expression.

The result of a function and its required arguments. Some DAX functions return a table instead of a scalar,

and must be wrapped in a function that evaluates the table and returns a scalar ; unless the table is a

single column, single row table, then it is treated as a scalar value.

Most DAX functions require one or more arguments, which can include tables, columns, expressions, and

values. However, some functions, such as PI, do not require any arguments, but always require

parentheses to indicate the null argument. For example, you must always type PI(), not PI. You can also

nest functions within other functions.

Expressions. An expression can contain any or all of the following: operators, constants, or references to

columns.

For example, the following are all valid formulas.

Formulas can behave differently depending on how they are used. You must always be aware of the context and

how the data that you use in the formula is related to other data that might be used in the calculation.

Naming requirements

NOTENOTE

 TablesTables

 MeasuresMeasures

 ColumnsColumns

A data model often contains multiple tables. Together the tables and their columns comprise a database stored

in the in-memory analytics engine (VertiPaq). Within that database, all tables must have unique names. The

names of columns must also be unique within each table. All object names are case-insensitive; for example, the

names SALESSALES and SalesSales would represent the same table.

Each column and measure you add to an existing data model must belong to a specific table. You specify the

table that contains the column either implicitly, when you create a calculated column within a table, or explicitly,

when you create a measure and specify the name of the table where the measure definition should be stored.

When you use a table or column as an input to a function, you must generally qualify the column name. The

fully qualified name of a column is the table name, followed by the column name in square brackets: for

examples, 'U.S. Sales'[Products]. A fully qualified name is always required when you reference a column in the

following contexts:

As an argument to the function, VALUES

As an argument to the functions, ALL or ALLEXCEPT

In a filter argument for the functions, CALCULATE or CALCULATETABLE

As an argument to the function, RELATEDTABLE

As an argument to any time intelligence function

An unqualified column name is just the name of the column, enclosed in brackets: for example, [Sales Amount].

For example, when you are referencing a scalar value from the same row of the current table, you can use the

unqualified column name.

If the name of a table contains spaces, reserved keywords, or disallowed characters, you must enclose the table

name in single quotation marks. You must also enclose table names in quotation marks if the name contains any

characters outside the ANSI alphanumeric character range, regardless of whether your locale supports the

character set or not. For example, if you open a workbook that contains table names written in Cyrillic

characters, such as 'Таблица', the table name must be enclosed in quotation marks, even though it does not

contain spaces.

To make it easier to enter the fully qualified names of columns, use the AutoComplete feature in the formula editor.

Table names are required whenever the column is from a different table than the current table. Table

names must be unique within the database.

Table names must be enclosed in single quotation marks if they contain spaces, other special characters

or any non-English alphanumeric characters.

Measure names must always be in brackets.

Measure names can contain spaces.

Each measure name must be unique within a model. Therefore, the table name is optional in front of a

measure name when referencing an existing measure. However, when you create a measure you must

always specify a table where the measure definition will be stored.

 Reserved keywordsReserved keywords

NOTENOTE

 Special charactersSpecial characters

 Examples of object namesExamples of object names

O B JEC T T Y P ESO B JEC T T Y P ES EXA M P L ESEXA M P L ES C O M M EN TC O M M EN T

Table name SalesSales If the table name does not contain
spaces or other special characters, the
name does not need to be enclosed in
quotation marks.

Table name 'Canada Sales''Canada Sales' If the name contains spaces, tabs or
other special characters, enclose the
name in single quotation marks.

Fully qualified column name Sales[Amount]Sales[Amount] The table name precedes the column
name, and the column name is
enclosed in brackets.

Fully qualified measure name Sales[Profit]Sales[Profit] The table name precedes the measure
name, and the measure name is
enclosed in brackets. In certain
contexts, a fully qualified name is
always required.

Column names must be unique in the context of a table; however, multiple tables can have columns with the

same names (disambiguation comes with the table name).

In general, columns can be referenced without referencing the base table that they belong to, except when there

might be a name conflict to resolve or with certain functions that require column names to be fully qualified.

If the name that you use for a table is the same as an Analysis Services reserved keyword, an error is raised, and

you must rename the table. However, you can use keywords in object names if the object name is enclosed in

brackets (for columns) or quotation marks (for tables).

Quotation marks can be represented by several different characters, depending on the application. If you paste formulas

from an external document or Web page, make sure to check the ASCII code of the character that is used for opening and

closing quotes, to ensure that they are the same. Otherwise DAX may be unable to recognize the symbols as quotation

marks, making the reference invalid.

The following characters and character types are not valid in the names of tables, columns, or measures:

Leading or trailing spaces; unless the spaces are enclosed by name delimiters, brackets, or single

apostrophes.

Control characters

The following characters that are not valid in the names of objects:

.,;':/*|?&%$!+=()[]{}<>

The following table shows examples of some object names:

Unqualified column name [Amount][Amount] The unqualified name is just the
column name, in brackets. Contexts
where you can use the unqualified
name include formulas in a calculated
column within the same table, or in an
aggregation function that is scanning
over the same table.

Fully qualified column in table with
spaces

'Canada Sales'[Qty]'Canada Sales'[Qty] The table name contains spaces, so it
must be surrounded by single quotes.

O B JEC T T Y P ESO B JEC T T Y P ES EXA M P L ESEXA M P L ES C O M M EN TC O M M EN T

 Other restrictionsOther restrictions

 DAX operators and constants

O P ERATO R T Y P EO P ERATO R T Y P E SY M B O L A N D USESY M B O L A N D USE

Parenthesis operator () precedence order and grouping of arguments

Arithmetic operators + (addition)

- (subtraction/

sign)

* (multiplication)

/ (division)

^ (exponentiation)

Comparison operators = (equal to)

> (greater than)

< (less than)

>= (greater than or equal to)

<= (less than or equal to)

<> (not equal to)

The syntax required for each function, and the type of operation it can perform, varies greatly depending on the

function. In general, however, the following rules apply to all formulas and expressions:

DAX formulas and expressions cannot modify or insert individual values in tables.

You cannot create calculated rows by using DAX. You can create only calculated columns and measures.

When defining calculated columns, you can nest functions to any level.

DAX has several functions that return a table. Typically, you use the values returned by these functions as

input to other functions, which require a table as input.

The following table lists the operators that are supported by DAX. For more information about the syntax of

individual operators, see DAX operators.

Text concatenation operator & (concatenation)

Logic operators && (and)

|| (or)

O P ERATO R T Y P EO P ERATO R T Y P E SY M B O L A N D USESY M B O L A N D USE

 Data types

IMPORTANTIMPORTANT

 Date and time

 Date and time literalDate and time literal

You do not need to cast, convert, or otherwise specify the data type of a column or value that you use in a DAX

formula. When you use data in a DAX formula, DAX automatically identifies the data types in referenced

columns and of the values that you type in, and performs implicit conversions where necessary to complete the

specified operation.

For example, if you try to add a number to a date value, the engine will interpret the operation in the context of

the function, and convert the numbers to a common data type, and then present the result in the intended

format, a date.

However, there are some limitations on the values that can be successfully converted. If a value or a column has

a data type that is incompatible with the current operation, DAX returns an error. Also, DAX does not provide

functions that let you explicitly change, convert, or cast the data type of existing data that you have imported

into a data model.

DAX does not support use of the variant data type. Therefore, when you load or import data into a data model, it's

expected the data in each column is generally of a consistent data type.

Some functions return scalar values, including strings, whereas other functions work with numbers, both

integers and real numbers, or dates and times. The data type required for each function is described in the

section, DAX functions.

You can use tables containing multiple columns and multiple rows of data as the argument to a function. Some

functions also return tables, which are stored in memory and can be used as arguments to other functions.

DAX stores date and time values using the datetime data type used by Microsoft SQL Server. Datetime format

uses a floating-point number where Date values correspond to the integer portion representing the number of

days since December 30, 1899. Time values correspond to the decimal portion of a date value where Hours,

minutes, and seconds are represented by decimal fractions of a day. DAX date and time functions implicitly

convert arguments to datetime data type.

Beginning with the August 2021 version of Power BI Desktop, DAX date and datetime values can be specified as

a literal in the format dt"YYYY-MM-DD" , dt"YYYY-MM-DDThh:mm:ss" , or dt"YYYY-MM-DD hh:mm:ss" . When specified as

a literal, use of DATE, TIME, DATEVALUE, TIMEVALUE functions in the expression are not necessary.

For example, the following expression uses DATE and TIME functions to filter on OrderDate:

EVALUATE
FILTER (
 FactInternetSales,
 [OrderDate] > (DATE(2015,1,9) + TIME(2,30,0)) &&[OrderDate] < (DATE(2015,12,31) + TIME(11,59,59))
)

EVALUATE
FILTER (
 FactInternetSales,
 [OrderDate] > dt"2015-1-9T02:30:00" && [OrderDate] < dt"2015-12-31T11:59:59"
)

NOTENOTE

The same filter expression can be specified as a literal:

The DAX date and datetime-typed literal format is not supported in all versions of Power BI Desktop, Analysis Services,

and Power Pivot in Excel. New and updated DAX functionality are typically first introduced in Power BI Desktop and then

later included in Analysis Services and Power Pivot in Excel.

	Cover Page
	Data Analysis Expressions (DAX) Reference
	Learn
	DAX overview
	Videos
	Use DAX in Power BI Desktop Learn path
	Sample model
	Best practices
	Appropriate use of error functions
	Avoid converting BLANKs to values
	Avoid using FILTER as a filter argument
	Column and measure references
	DIVIDE function vs divide operator (/)
	Use SELECTEDVALUE instead of VALUES
	Use COUNTROWS instead of COUNT
	Use variables to improve formulas

	DAX functions
	DAX function reference
	New DAX functions
	Aggregation functions
	Aggregation functions overview
	APPROXIMATEDISTINCTCOUNT
	AVERAGE
	AVERAGEA
	AVERAGEX
	COUNT
	COUNTA
	COUNTAX
	COUNTBLANK
	COUNTROWS
	COUNTX
	DISTINCTCOUNT
	DISTINCTCOUNTNOBLANK
	MAX
	MAXA
	MAXX
	MIN
	MINA
	MINX
	PRODUCT
	PRODUCTX
	SUM
	SUMX

	Date and time functions
	Date and time functions overview
	CALENDAR
	CALENDARAUTO
	DATE
	DATEDIFF
	DATEVALUE
	DAY
	EDATE
	EOMONTH
	HOUR
	MINUTE
	MONTH
	NOW
	QUARTER
	SECOND
	TIME
	TIMEVALUE
	TODAY
	UTCNOW
	UTCTODAY
	WEEKDAY
	WEEKNUM
	YEAR
	YEARFRAC

	Filter functions
	Filter functions overview
	ALL
	ALLCROSSFILTERED
	ALLEXCEPT
	ALLNOBLANKROW
	ALLSELECTED
	CALCULATE
	CALCULATETABLE
	EARLIER
	EARLIEST
	FILTER
	KEEPFILTERS
	LOOKUPVALUE
	REMOVEFILTERS
	SELECTEDVALUE

	Financial functions
	Financial functions overview
	ACCRINT
	ACCRINTM
	AMORDEGRC
	AMORLINC
	COUPDAYBS
	COUPDAYS
	COUPDAYSNC
	COUPNCD
	COUPNUM
	COUPPCD
	CUMIPMT
	CUMPRINC
	DB
	DDB
	DISC
	DOLLARDE
	DOLLARFR
	DURATION
	EFFECT
	FV
	INTRATE
	IPMT
	ISPMT
	MDURATION
	NOMINAL
	NPER
	ODDFPRICE
	ODDFYIELD
	ODDLPRICE
	ODDLYIELD
	PDURATION
	PMT
	PPMT
	PRICE
	PRICEDISC
	PRICEMAT
	PV
	RATE
	RECEIVED
	RRI
	SLN
	SYD
	TBILLEQ
	TBILLPRICE
	TBILLYIELD
	VDB
	XIRR
	XNPV
	YIELD
	YIELDDISC
	YIELDMAT

	Information functions
	Information functions overview
	CONTAINS
	CONTAINSROW
	CONTAINSSTRING
	CONTAINSSTRINGEXACT
	CUSTOMDATA
	HASONEFILTER
	HASONEVALUE
	ISAFTER
	ISBLANK
	ISCROSSFILTERED
	ISEMPTY
	ISERROR
	ISEVEN
	ISFILTERED
	ISINSCOPE
	ISLOGICAL
	ISNONTEXT
	ISNUMBER
	ISODD
	ISONORAFTER
	ISSELECTEDMEASURE
	ISSUBTOTAL
	ISTEXT
	NONVISUAL
	SELECTEDMEASURE
	SELECTEDMEASUREFORMATSTRING
	SELECTEDMEASURENAME
	USERNAME
	USEROBJECTID
	USERPRINCIPALNAME

	Logical functions
	Logical functions overview
	AND
	BITAND
	BITLSHIFT
	BITOR
	BITRSHIFT
	BITXOR
	COALESCE
	FALSE
	IF
	IF.EAGER
	IFERROR
	NOT
	OR
	SWITCH
	TRUE

	Math and trig functions
	Math and trig functions overview
	ABS
	ACOS
	ACOSH
	ACOT
	ACOTH
	ASIN
	ASINH
	ATAN
	ATANH
	CEILING
	CONVERT
	COS
	COSH
	COT
	COTH
	CURRENCY
	DEGREES
	DIVIDE
	EVEN
	EXP
	FACT
	FLOOR
	GCD
	INT
	ISO.CEILING
	LCM
	LN
	LOG
	LOG10
	MOD
	MROUND
	ODD
	PI
	POWER
	QUOTIENT
	RADIANS
	RAND
	RANDBETWEEN
	ROUND
	ROUNDDOWN
	ROUNDUP
	SIGN
	SIN
	SINH
	SQRT
	SQRTPI
	TAN
	TANH
	TRUNC

	Other functions
	Other functions overview
	BLANK
	ERROR

	Parent and child functions
	Parent and child functions overview
	Understanding functions for parent-child hierarchies
	PATH
	PATHCONTAINS
	PATHITEM
	PATHITEMREVERSE
	PATHLENGTH

	Relationship functions
	Relationship functions
	CROSSFILTER
	RELATED
	RELATEDTABLE
	USERELATIONSHIP

	Statistical functions
	Statistical functions overview
	BETA.DIST
	BETA.INV
	CHISQ.DIST
	CHISQ.DIST.RT
	CHISQ.INV
	CHISQ.INV.RT
	COMBIN
	COMBINA
	CONFIDENCE.NORM
	CONFIDENCE.T
	EXPON.DIST
	GEOMEAN
	GEOMEANX
	MEDIAN
	MEDIANX
	NORM.DIST
	NORM.INV
	NORM.S.DIST
	NORM.S.INV
	PERCENTILE.EXC
	PERCENTILE.INC
	PERCENTILEX.EXC
	PERCENTILEX.INC
	PERMUT
	POISSON.DIST
	RANK.EQ
	RANKX
	SAMPLE
	STDEV.S
	STDEV.P
	STDEVX.S
	STDEVX.P
	T.DIST
	T.DIST.2T
	T.DIST.RT
	T.INV
	T.INV.2T
	VAR.S
	VAR.P
	VARX.S
	VARX.P

	Table manipulation functions
	Table manipulation functions overview
	ADDCOLUMNS
	ADDMISSINGITEMS
	CROSSJOIN
	CURRENTGROUP
	DATATABLE
	DETAILROWS
	DISTINCT (column)
	DISTINCT (table)
	EXCEPT
	FILTERS
	GENERATE
	GENERATEALL
	GENERATESERIES
	GROUPBY
	IGNORE
	INTERSECT
	NATURALINNERJOIN
	NATURALLEFTOUTERJOIN
	ROLLUP
	ROLLUPADDISUBTOTAL
	ROLLUPGROUP
	ROLLUPISUBTOTAL
	ROW
	SELECTCOLUMNS
	SUBSTITUTEWITHINDEX
	SUMMARIZE
	SUMMARIZECOLUMNS
	Table constructor
	TOPN
	TREATAS
	UNION
	VALUES

	Text functions
	Text functions overview
	COMBINEVALUES
	CONCATENATE
	CONCATENATEX
	EXACT
	FIND
	FIXED
	FORMAT
	LEFT
	LEN
	LOWER
	MID
	REPLACE
	REPT
	RIGHT
	SEARCH
	SUBSTITUTE
	TRIM
	UNICHAR
	UNICODE
	UPPER
	VALUE

	Time intelligence functions
	Time intelligence functions overview
	CLOSINGBALANCEMONTH
	CLOSINGBALANCEQUARTER
	CLOSINGBALANCEYEAR
	DATEADD
	DATESBETWEEN
	DATESINPERIOD
	DATESMTD
	DATESQTD
	DATESYTD
	ENDOFMONTH
	ENDOFQUARTER
	ENDOFYEAR
	FIRSTDATE
	FIRSTNONBLANK
	FIRSTNONBLANKVALUE
	LASTDATE
	LASTNONBLANK
	LASTNONBLANKVALUE
	NEXTDAY
	NEXTMONTH
	NEXTQUARTER
	NEXTYEAR
	OPENINGBALANCEMONTH
	OPENINGBALANCEQUARTER
	OPENINGBALANCEYEAR
	PARALLELPERIOD
	PREVIOUSDAY
	PREVIOUSMONTH
	PREVIOUSQUARTER
	PREVIOUSYEAR
	SAMEPERIODLASTYEAR
	STARTOFMONTH
	STARTOFQUARTER
	STARTOFYEAR
	TOTALMTD
	TOTALQTD
	TOTALYTD

	DAX statements
	Statements overview
	DEFINE
	EVALUATE
	ORDER BY
	VAR

	DAX glossary
	DAX operators
	DAX queries
	DAX parameter-naming
	DAX syntax

