| Method | Uses | Concerns | |-------------------------------|--|---| | Decision Trees | Trees handle outliers and missing observations well. High Interpretability. Interactions considered automatically, but implicitly. Ensemble trees e.g. random forest and gradient boosting have the ability to increase prediction accuracy and decreases overfitting to some extent. | Overfitting. Unstable with a small dataset. Unstable with outliers and noisy data. Careful parameter tuning required. | | Penalized Regression | Supervised regression or classification. Modeling linear or non- linear occurrence by specifying interactions terms. Parsimonious model. When interpretability is important. | Standardization needed. Careful parameter tuning required. Treat missing and outliers values prior to algorithm implementation. | | K-Mean | Unsupervised clustering. Finding similar observations to
form the groups in a dataset
without labels. | Standardization needed. Finding an optimal number of K. Sensitive to missing values and outliers. | | Hierarchical Clustering | Unsupervised clustering. Create a known number of overlapping clusters of different sizes. | Standardization needed. An optimal number of clusters. Sensitive to missing values and outliers. Curse of dimensionality. | | Support Vector Machines (SVM) | Modeling linear and non- linear occurrence by using linear and non-linear kernels. Capture much more complex relationships between observations. | Low interpretability. Computationally intensive. Missing values and outliers. Standardization needed. Parameter tuning. | | Neural Networks | Pattern recognition in images, videos etc. Unsupervised feature extraction. Supervised regression or classification. Anomaly detection with autoencoder networks. | Low interpretability. Missing values and outliers. Standardization needed. Parameter tuning. Computationally intensive. |