RAPPELS PRINCIPES DES TESTS STATISTIQUES ET TESTS PARAMETRIQUES

Comparaison de plusieurs pourcentages observés

Exemple: Effet des Antécédents sur la pathologie digestive, Echantillon de 32 sujets

16 non malades16 malades

table(DIG,ATCD)

$$P_0 = ? \%$$

$$P_1 = ? \%$$

$$P_2 = ? \%$$

Proportion de pathol. digestive selon les antécédents

prop.table(table(DIG,ATCD),2)

	ATCD0	ATCD1	ATCD2
DIG0	10	5	1
DIG1	0	5	11

	ATCD0	ATCD1	ATCD2
DIG0	1	0,5	0,08
DIG1	0	0,5	0,92

→1. Hypothèses:

H0: P₁=P₂=P₃ le pourcentage de malades est identique quelque soit les antécédents

H1: $1 \neq$ au moins 1 pourcentage est différent

→2. Prédictions:

Sous H0 on doit observer P=16/32 \(\frac{1}{4} 50 \) de pathol. digest.

	ATCD 0	ATCD 1	ATCD 2	
DIG 0	10 5	5 5	1 4	16
DIG 1	0 5	5 5	11 6	16
	10	10	12	32

1. Hypothèses

2. Prédictions

Sous H0 et si les conditions d'application sont respectées

	ATCD 0	ATCD 1	ATCD 2	
DIG 0	10 5	5 5	1 6	16
DIG 1	0 5	5 5	11 6	16
	10	10	12	32

Conditions

C_{ij}>5
Indépendance
des individus

$$\chi^2 = \sum \frac{O_{ij} - C_{ij}}{C_{ii}}$$

- 1. Hypothèses
- 2. Prédictions
- → 3. Confrontation: observation ↔ théorie sous H0

Chisq.test(DIG, ATCD, correct=FALSE)

Données

χ²₀ sous H ddl Petit « p »

Conditions d'application:

Où trouver les Cij?

C<-chisq.test(DIG, ATCD, correct=FALSE)

attributes(C)

```
$names
[1] "statistic" "parameter" "p.value" "method" "data.name" "observed"
[7] "expected" "residuals"
$class
[1] "htest"
```

C\$expected

```
ATCD
DIG 0 1 2
0 5 5 6
1 5 5 6
```

Conditions d'application:

remarque

chisq.test(DIG, ATCD, correct=TRUE)

SI 3<C_{ij}<5

Pas de correction de continuité de Yates pour plus de 2 pourcentages il faut...

⇒ regrouper des classes

- 1. Hypothèses
- 2. Prédictions
- 3. Confrontation
- →4. Interprétation
- **→**p<0,05
- Test significatif
- Rejet de H0 au risque α =5%
- →Il y a, au moins, une différence entre les 3 pourcentages
- Dans le sens « Les patients ayant plus d'antécédents ont plus de pathologie digestive »

ATTENTION

- 1. On rejette l'hypothèse nulle $P_1 = P_2 = P_3$
- ⇒ une égalité au moins est fausse
- ⇒ il y a au moins une différence
- ⇒ mais on n'a pas testé laquelle:

$$P_1 \neq P_2$$
 ou $P_1 \neq P_3$ ou $P_2 \neq P_3$???

On ne peut pas tester ENSUITE les moyennes 2 à 2 sinon α ↑↑

$$\alpha_{total} \leq \sum_{i=1}^{k \text{ tests}} \alpha_i$$

Exercice

- fichier TABAC.csv
- Y a-t-il une différence pourcentage d'hommes en fonction des antécédents ?

table(SEXE,ATCD)

	ATCD0	ATCD1	ATCD2
S0	6	6	4
S1	4	4	8

prop.table(table(SEXE,ATCD),2)

	ATCD0	ATCD1	ATCD2
S0	0,6	0,6	0,33
S1	0,4	0,4	0,67

Exercice

→1. Hypothèses

H0: $P_0 = P_1 = P_2$, il n'y a pas de différence entre les pourcentages

H1: il y a, au moins, une différence

→2. Prédictions, conditions d'application

Sous H0 et si les conditions d'application sont respectées

$$\chi^2 = \sum \frac{\left(O_{ij} - C_{ij}\right)^2}{C_{ij}}$$

Conditions

 $_{\circ}C_{ij}>5$

Indépendance des individus

1. Hypothèses

- 2. Prédictions
- 3. Confrontation: observation ↔ théorie sous H0

chisq.test(SEXE, ATCD)

Pearson's Chi-squared test

data: SEXE and ATCD

X-squared = 2.1333, df = 2, p-value = 0.3442

C\$expected

ATCD SEXE 0 1 2 0 5 5 6 1 5 5 6

- 1. Hypothèses
- 2. Prédictions
- 3. Confrontation
- →4. Interprétation
- **⇒** •p>0,05
- Test non significatif
- Non rejet de H0 au risque β
- On ne met pas en évidence de différence entre les 3 pourcentages d'hommmes

Références

Jean Bouyer: *Méthodes statistiques, Médecine-Biologie*, éditions INSERM

STA UNIV, Pr Jean Gaudart, Faculté de Médecine de Marseille